
B. Mitschang et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2017),

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 601

ControVol Flex: Flexible Schema Evolution for NoSQL

Application Development

Florian Haubold1, Johannes Schildgen2, Stefanie Scherzinger3, Stefan Deßloch4

Abstract: We demonstrate ControVol Flex, an Eclipse plugin for controlled schema evolution in Java
applications backed by NoSQL document stores. The sweet spot of our tool are applications that are
deployed continuously against the same production data store: Each new release may bring about
schema changes that conĆict with legacy data already stored in production. The type system internal to
the predecessor tool ControVol is able to detect common schema conflicts, and enables developers to
resolve them with the help of object-mapper annotations. Our new tool ControVol Flex lets developers
choose their schema-migration strategy, whether all legacy data is to be migrated eagerly by means
of NotaQL transformation scripts, or lazily, as declared by object-mapper annotations. Our tool is
even capable of carrying out both strategies in combination, eagerly migrating data in the background,
while lazily migrating data that is meanwhile accessed by the application. From the viewpoint of the
application, it remains transparent how legacy data is migrated: Every read access yields an entity that
matches the structure that the current application code expects. Our live demo shows how ControVol
Flex gracefully solves a broad range of common schema-evolution tasks.

Keywords: Schema evolution, NoSQL, NotaQL

1 Purging Migration Debt in Schema-Flexible NoSQL Data Stores

Schema-Ćexible NoSQL data stores are popular with agile development teams, especially

when software is deployed continuously: Even for small, incremental changes of the code, a

new release is deployed to production. Each new version of the application declares its own

data model or schema, usually encoded within object mapper class declarations.

NoSQL data stores like MongoDB [Mon16] can store legacy entities, i.e., entities that

adhere to the schema imposed by earlier application releases, as well as entities written

by the latest release. Object-NoSQL mappers like Morphia [Mor16] are capable of lazily

migrating legacy entities to the latest schema, whenever they are accessed by the application.

Figure 1(a) describes such a scenario for a gaming application: In the Ąrst release, each

player written to the data store has a unique id, and further information on his or her level

and health status. With the second release of the application, the schema of players changes:

Attribute level is renamed to rank. When a legacy player is now loaded, its level value is

automatically loaded as rank, due to the Morphia annotation @AlsoLoad.

Simple changes such as adding, removing, or renaming an attribute can be performed quite

gracefully with this approach. However, the third release of the application brings about a

1 Technische Universität Kaiserslautern, f_haubold12@cs.uni-kl.de
2 Technische Universität Kaiserslautern, schildgen@cs.uni-kl.de
3 OTH Regensburg, stefanie.scherzinger@oth-regensburg.de
4 Technische Universität Kaiserslautern,dessloch@cs.uni-kl.de

f_haubold12@cs.uni-kl.de
schildgen@cs.uni-kl.de
stefanie.scherzinger@oth-regensburg.de
Kaiserslautern, dessloch@cs.uni-kl.de


602 Florian Haubold, Johannes Schildgen, Stefanie Scherzinger, Stefan Deßloch

 A developer 

renames level to rank…

 ControVol warns

about a schema conflict

with legacy entities…

 … and adds

lazy migration 

annotation 

@AlsoLoad.

(a) Lazily renaming level to rank using the Morphia annotation @AlsoLoad.

 changing the type of health

is also a schema conflict,

and may be resolved lazily

(b) Lazily retyping health from String to Double, writing custom code.

Fig. 1: Building up migration debt while lazily evolving the declaration of class Player.

more complex change, as shown in Figure 1(b): The playersŠ health is no longer recorded

as a String, but is stored as a Ćoating point value. Lazily retyping values can be done:

Whenever a player entity is loaded, the method annotated @PostLoad is invoked. Now,

developers need to write the code to translate the legacy health value (no longer stored due to

annotation @NotSaved), to a Double (stored as healthNew). Already in this simple scenario,

we see how quickly we build up technical debt in the form of migration debt: Player classes

now carry two health attributes, to distinguish legacy values from up-to-date values. This

can be confusing to newcomers in the project. Moreover, immersing migration code in

class declarations violates the software engineering principle of separation of concerns.

Additionally, all queries issued by the application code (rather than accessing a single entity

by its key) need to consider all structural variations of legacy entities. Overall, application

development is slowed down due to the need to account for the structural heterogeneity of

legacy entities. At some point in time, eager migration of all legacy entities is called for.

Today, developers lack the tool support for systematically managing schema evolution in

settings such as these. That is, we need to provide a development environment that



ControVol Flex: Flexible Schema Evolution for NoSQL Application Development 603

(a) Migrating to schema version 2. (b) Migrating to schema version 3.

Fig. 2: NotaQL scripts to eagerly migrate legacy entities, as produced by ControVol Flex.

1. keeps track of the various schema versions that occur in the production data store,

2. warns developers about possible schema conĆicts when they make changes to class

declarations that are incompatible with legacy entities,

3. automatically Ąxes detected schema conĆicts lazily, and further

4. provides easy means so that developers may migrate legacy data eagerly as well.

5. Finally, a tool that even allows to carry out eager and lazy data migration concurrently,

which is vital for the continuous deployment of zero-downtime applications.

In earlier work, we have presented ControVol, an Eclipse plugin that meets desiderata (1)

through (3) [CCS15; SCC15]. In this demo, we introduce its successor ControVol Flex, the

Ąrst tool that meets all Ąve desiderata: ControVol Flex generates NotaQL [SD15; SLD16]

scripts for eager data migration, upon the push of a button. The only requirement that

ControVol Flex imposes is that all object mapper class declarations carry a dedicated

attribute schemaVersion (c.f. Figure 1), maintained by ControVol Flex. This is a reasonable

requirement: Empirical analysis of open source projects shows that maintaining timestamps

or versions in persisted entities is common practice in the developer community [RSB16].

Regarding our example, the script in Figure 2(a) transforms all legacy entities written before

version 2 of the application code (c.f. line 1) by an update in place: The NotaQL commands

are read from right-to-left, where the right side matches parts of the input entity (IN),

and the left side declares the change to the output entity (OUT). The identifying property

id (mapped to the MongoDB-internal identiĄer _id by Morphia) is preserved (line 3), as

are all properties other than the level and schemaVersion (lines 4). In fact, the value of a

level-property is renamed to rank (line 5). In line 2, the dedicated property schemaVersion

is upgraded to 2. Analogously, the NotaQL script in Figure 2(b) recasts health attributes. By

applying both scripts, all legacy entities are eagerly upgraded to schema version 3, and thus

the structure expected by the current application code.

A major advantage of NotaQL is that this transformation language is independent of a

particular data store and even data model: This provides a convenient level of abstraction

compared to system-speciĄc APIs or aggregation pipelines. Further, developers may edit

the generated NotaQL scripts, to unleash the full power of this transformation language

in eager migration: NotaQL supports complex changes such as nesting and unnesting of

hierarchical data, as well as arrays and aggregation operations. As such, it is a powerful tool

at the hands of developers for conveniently purging migration debt from NoSQL backends.



604 Florian Haubold, Johannes Schildgen, Stefanie Scherzinger, Stefan Deßloch

2 Demonstration Outline

Our demo scenario describes the agile software-development process of an online role-

playing game. The general outline for our interactive demo is this:

1. We introduce a generic development setup using the Eclipse IDE, the Java pro-

gramming language, the NoSQL data store MongoDB, and the Morphia object

mapper.

2. We demonstrate how schema conĆicts can occur due to continuous deployment.

We provoke serious problems, such as data loss by renaming attributes, type errors

by changing attribute types, and missing default values by adding new attributes.

ControVol Flex detects these conĆicts and proposes appropriate quickĄxes in Eclipse.

3. We then show how ControVol Flex helps to migrate the NoSQL schema lazily by

adding Morphia annotations to our code. We also show how ControVol Flex generates

NotaQL scripts to eagerly migrate legacy entities. We point out how user-friendly our

plugin is by generating one script for all or even just selected schema conĆicts.

4. We demo the two hybrid modi operandi of ControVol Flex: (1) First kicking of eager

migration in the background, while migrating legacy entities lazily, if the application

requests access and eager migration has not reached them yet. Alternatively, (2)

starting out with lazy migration, and then cleaning up the remaining legacy entities to

bring the data instance into a consistent state. We show that application development

remains unimpaired by the mode chosen.

5. Furthermore, we demonstrate the automatic version-numbering mechanism for the

diferent stages of our schema evolution process.

Acknowledgements: The authors are grateful to the extended team who has built the predecessor

ControVol: Eduardo Cunha de Almeida and Pedro Holanda from UFPR Brazil, Thomas Cerqueus

from University of Lyon, and Dennis Schmidt from OTH Regensburg.

References

[CCS15] Cerqueus, T.; Cunha de Almeida, E.; Scherzinger, S.: Safely Managing Data

Variety in Big Data Software Development. In: Proc. BIGDSEŠ15. 2015.

[Mon16] MongoDB, http://www.mongodb.org/, 2016.

[Mor16] Morphia, https://github.com/mongodb/morphia/, 2016.

[RSB16] Ringlstetter, A.; Scherzinger, S.; Bissyandé, T. F.: Data Model Evolution using

Object-NoSQL Mappers: Folklore or State-of-the-Art? In: Proc. BIGDSE. 2016.

[SCC15] Scherzinger, S.; Cunha de Almeida, E.; Cerqueus, T.: ControVol: A Framework

for Controlled Schema Evolution in NoSQL Application Development. In: Proc.

ICDEŠ15, demo paper. 2015.

[SD15] Schildgen, J.; Deßloch, S.: NotaQL Is Not a Query Language! ItŠs for Data

Transformation on Wide-Column Stores. In: Proc. BICODŠ15. 2015.

[SLD16] Schildgen, J.; Lottermann, T.; Deßloch, S.: Cross-system NoSQL data transfor-

mations with NotaQL. In: Proc. BeyondMRŠ16. 2016.

http://www.mongodb.org/
https://github.com/mongodb/morphia/

