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Introduction



* Objective of the challenge: Given a data set about car accidents in
New York City, the participants were asked to explore and analyze
the data set. Some questions and tasks were suggested, like for
instance:

Where are dangerous spots?

Where are accident-free spots?

Visualize the data

Create an animation of the development over time

A A

Descriptive statistics and correlations, such as:

. What types of accidents occur?

. Are there connections between accidents and large public events?
. What factors influence accidents?

 Main question: How large is the potential for avoiding accidents?



* The primary dataset is called NYPD Motor Vehicle Collisions
* Size: 988k rows, each describing a reported vehicle collision
* 29 columns:

time and date of the accident
geocoordinates of the nearest intersection (and also street names)

number of injured pedestrians, cyclists, and motorists (=> summed as
number of persons injured)

number of killed pedestrians, cyclists, and motorists (=> summed as
number of persons killed)

contributing factor (e.g., following too closely or brakes defective) of
the involved vehicles (up to 5 factors; 1 per vehicle)

vehicle type (e.g., passenger vehicle or SUV) of the involved vehicles (up
to 5 vehicles)



Cloud Technology

* The participation in the challenge requires the usage of cloud
technologies.

 We decided to use Microsoft’s cloud technology called Azure.

gl \icrosoft
Wl Azure

* To make our presentation a little bit more interactive, we
decided to make most of the cooler stuff directly available:
— btw2017-dsc-hhu.azurewebsites.net/
— orvia an URL shortener: bit.do/hhu-btw2017
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Analysis & Statistics
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Microsoft Azure Machine Learning Studio / Azure ML

* Microsoft currently offers a free cloud based machine learning
platform called Azure ML. ! e

Machine Learning

* Since Azure ML provides drag & drop functionality to process
the dataset and perform machine learning operations, we
started by uploading the dataset into Azure ML.

* Afterwards, we filtered the dataset from 988k rows down to
770k rows that include geocoordinates.
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Azure’s Visualize Function

 Azure ML contains some ready to use analysis functions:
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Azure‘s Visualize Function

 Azure ML contains some ready to use analysis functions:

rows columns
769878 29
DATE TIME BOROUGH
view as
ir i}
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Azure’s Visualize Function

Attribute location:
* We instantly see that:

— there are ~73.5k unique dangerous
spots

— that approximately 700 accidents
happened at the most dangerous
spot
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Azure’s Visualize Function

Attribute persons injured:

4 Statistics

* We instantly see that: Unique Vatuss 25

Missing Values 1
Feature Type String Feature

— no persons were injured in ~650k
(84.4%) of the reported accidents * /==

NUMBER OF PERSONS INJURED

— ~13% of the accidents resulted in -
the injury of one person

cIe+D
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NUMBER OF PERSONS INJURED
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Azure’s Visualize Function

Attribute persons killed:

4 Statistics

 We see that: -
Median 0
— Fortunately, deaths of persons are i 0
Maax 5
rare ' Standard Deviation  0.0361
Unigque Values 6
— The maximum amount of car Missing Values 2

Feature Type MNumeric Feature

accident related deaths is 5

4 Visualizations

NUMBER OF PERSONS KILLED

_Lfll' equency

NUMBER OF PERSONS KILLED
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Azure’s Visualize Function

Attribute number of cyclist injured:

* \We have outliers!

bit.do/hhu-btw2017

4 Statistics
Mean 4,2959
Median 0
Min (1

Standard Deviation 3751.0259

Unique Values 8
Missing Values 1
Feature Type Mumeric Feature
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Azure’s Visualize Function

Attribute date:

* We group the accidents by date,
sort the number of accidents in
descending order and look for
possible correlations:

— 01/21/2014: blizzard in NYC!

— 02/03/2014: day after Super Bowl
2014

frequency

1 http://www.stuttgarter-zeitung.de/inhalt.schneechaos-in-den-usa-blizzard-legt-new-york-und-

washington-lahm.6¢c859b7c-819a-4492-90cd-26c¢7e22b05bc.html
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Other Visualizations

Attribute vehicle type code 1:
e Passenger vehicles account for
most of the accidents.

* |In about 25% of the accidents,
SUVs or station wagons are
involved.

* 0.5% involve motorcycles (not
shown in the chart)

 0.015% involve bicycles (not
shown in the chart)

=> Don‘t drive a car, use a
motorcycle or a bicycle instead ;-)

bit.do/hhu-btw2017
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Other Visualizations

Attribute contributing factor vehicle 1:

[ ) Rega rd i n g t h e q u e St i O n IIW h at Unspeciied [ @ Oriver Inattention/Distraction Fatigued/Drowsy

I Failure to Yield Right-ofWay [l Other Vehicular Il Backing Unsafely

fa CtO rs Infl ue n Ce a CCIde ntS?” : I Turning IlﬁpLerl‘,- o CUI_nTrsDtl(;oi:rzzzszjss_-REFSr:—scrlptlnnr-.-1etllcat|on

— Over 50% of the accidents do not

have a contributing factor in their
accident report.

— The most common (specified) cause
is distraction, followed by being
fatigued.
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Visualization
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e Let’s move on to some cooler analysis in the form of visualizing
geocoordinates on a map.

* We plotted the accidents on a heatmap with Google Maps. The
colour of a spot indicates the amount of accidents.
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 The means of transportation (on foot, bycycle, car, or all
combined) and the timeframe can be selected.

Let’s switch to http://btw2017-dsc-hhu.azurewebsites.net and
try it out.

20
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Heatmaps - Animations

e We alsoinclude a filter to select a timeframe between a start
and an end date.

* In order to better understand how the amounts of accidents in
a certain area develop over time, we created animations for
our heatmap:

— Visualization per day
— Visualization per day and hour
— Visualization per hour

* We prepared a video that shows how the amount of accidents
for pedestrians develops during the day.

21
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,How to travel safely in NYC?“
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,How to travel safely in NYC?“

* Up until now, we analyzed the dataset and visualized it.

* In order to contribute to the “potential for avoiding accidents”,
we developed a navigation software that utilizes the NYPD
Motor Vehicle Collisions dataset to detect dangerous areas and
suggest routes through NYC that go around these areas.

* Scenario: Given a start location and an end location, we want
to plot a route that is as safe as possible while respecting the
means of transportation t € {pedestrian, bicycle, car}

* 3 external APIs:
— Routing: HERE (navigation software, owned by Audi, BMW, and Daimler)
— Geoencoding: Google API
— Visualization: Google Maps

23
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,How to travel safely in NYC?“

Workflow for the fastest route:

1.
2.
3.

Enter a start and an end location
Choose the means of transportation

Geoencode the entered adresses with Google APl (works
better than the geoencoding from HERE)

Get the route via the HERE API, JSON response of GPS
coordinates

Plot the returned GPS coordinates on Google Maps

24
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,How to travel safely in NYC?“

Workflow for a safer route:
Enter a start and an end location

2. Choose the means of transportation
3. Geoencode the entered adresses with Google API
4. Determine dangerous spots based on the dataset within a

minimal bounding rectangle of the start and end locations

while respecting a personal risk factor (lower values indicate a
higher will to take risks)

5. Get the route via the HERE API while avoiding the dangerous
spots
6. Plot the returned GPS coordinates on Google Maps

25
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Example 1
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* Let’s assume we want to travel from “New York Stock
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Let’s assume we want to travel from “New York Stock
Exchange” to “e 86th street, Lexington avenue” with a car.
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* Another example that shows that our navigation works outside
of Manhattan ;) “One World Trade Center” to “albany ave,

I”
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Conclusion and Future Work
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Conclusion & Future Work

Conclusion:

Introducted the goal of the task

Showed descriptive statistics in Azure ML

Visualized the accidents in form of a heatmap
Animated the development of the accidents over time

Demonstrated a solution to possibly make transportation in NYC a
little bit safer if our Azure-based solution is actually used by people
before starting a trip

Future Work:

Use Azure ML to predict the vehicle type code based on the features
in the dataset

Respect temporal aspects and weather conditions, e.g., the current
season or events like Super Bowl in the route calculation

30
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Thank you for your attention.



