Query Optimization: Are We <u>There</u> Yet?

Guy Lohman

IBM Almaden Research Center (retired)

Guy_Lohman@alumni.pomona.edu

Outline for a Keynote Speech

1. Congratulations on Past Successes!

2. Storm on the Horizon!

3. Roadmap for Challenges Before Us

Query Optimization 101

- What IS Query Optimization?
 - A <u>model</u> of query performance for different **execution plans**
 - **Goal:** Pick the <u>best</u>-performing plan (more on this later!)

• Why is it needed?

- SQL is **non-procedural** (specify <u>what</u>, not <u>how</u>)
- **Execution Plan** is (roughly) implemented by **relational operators**:
 - *SELECT* apply a single-table predicate
 - *PROJECT* access columns
 - *JOIN* apply a multi-table join predicate
- Relational operators form an <u>algebra</u> (Thanks, Ted Codd!) that is
 - Commutative
 - Associative

• Operators may be re-ordered!

LOTS of possible plans (roughly exponential in # of tables)!

- No one access method (index vs. scan) or algorithm (join method) dominates
- Heuristics reduce the space <u>somewhat</u>:
 - **Predicate push-down**: apply **SELECT** as soon as possible to eliminate unqualifying rows
 - Cartesian product avoidance: defer Cartesian products, i.e., joining tables with no join predicate

• Depends upon the shape of the query graph

• Refn: Ono & Lohman: Measuring the Complexity of Join Enumeration in Query Optimization. **VLDB 1990**: 314-325

Is Query Optimization Successful?

- Relational Databases are a WHOPPING SUCCESS:
 - Relational database industry > \$40B business in 2016!
 - Wouldn't have happened if optimization failed often enough
 - Optimizers get the "right plan" most of the time
 - SQL is (still)...
 - widely accepted for writing database apps
 - recognized as most successful declarative language
 - used by 95% of Spark users, too! (Refn.: Spark Summit 2017)
- Many of today's products derive from academia:
 - <u>Huge</u> literature: 858 hits for "query.optimiz" on DBLP
 - Endured & evolved as a "hot topic" for decades
 - Many of today's products derive from research prototypes
 - original, extensible, object-relational, distributed, parallel, ...
- So give yourselves a big pat on the back!

RDBMS is a YUGE Market!

CAGR (13-17) 60.0 -10% 50.1 50.0 -23% 45.7 36% 41.5 37.7 40.0 34.5 32.0 30.0 11% 20.0 10.0 0.0 2012 2013 2014 2015 2016 2017 Hadoop & No SQL Other Nonrelational Relational

Global Database Market (\$B)

Source: IDC, Bernstein analysis

But...LOTS of Problems Remain

- Even a small percent of "bad plans"...
 - Contributes most to bad performance
 - Breeds mistrust of the optimizer
 - Fosters demands for "easy fixes" that hurt, don't help
 - "Hints" are an admission of failure!
 - **Hint:** user specifies (portion of) a plan for a query
 - Tell optimizer how to do its job!
 - Harder for DBA to do right for more complex queries
 - Aren't robust to changes in design, statistics, or environment
 - "Fudge factors" in optimizer are even more undermining
 - "Fudge factor": Bias a cost in favor of (or against) a type of plan
 - Unknowingly affect other queries (that might have been fine before!)
 - Fudge factors beget more fudge factors, and yet more...
- Bad plans are the "tip of the iceberg"
 - Indicate unseen problems lurking
 - Will bite you at the least opportune time (Murphy's Law)

Scope

This talk covers...

- Cardinality and Cost Models
- Assumptions and their impact
- Some ways to avoid the impact of failed assumptions
- Research areas
- This talk does NOT cover...
 - Rule-based Query Rewrite transformations
 - Plan Enumeration strategies
 - Yet another histogramming technique
- Focus on things having the most <u>impact</u>!
 - Avoid "polishing the round ball"
 - Look for order-of-magnitude errors

Thesis of This Talk: Query Optimizers are Mathematical Models

- Optimizers model <u>performance</u> of each query plan that it considers
- <u>Assumptions</u> that underly the model must be
 - Carefully identified and understood, especially their potential impact
 - Minimized for robustness
 - Verified against application
- Strict comparison to <u>reality</u> is the <u>only</u> robust metric
 - Relativists and theoreticians need not apply!
- To be trustworthy, the model itself <u>must be validated against reality</u> for <u>all</u>...
 - Possible permutations of values in its parametric space, i.e., its inputs:
 - <u>All</u> database designs (normalization, indexes, partitioning,...), even bad designs!
 - <u>All</u> table characteristics (statistics, even values!)
 - <u>All</u> SQL queries, of arbitrary complexity (negation, disjuncts, 10-sigma constructs, subqueries, ...)
 - Environments
 - Hardware
 - Not just the latest & greatest!
 - Any degree of parallelism, on any number of nodes
 - Competing workloads on same system
 - **Requires an INCREDIBLE amount** of testing!
- This Mission is Impossible, and no one has even attempted it

Our Most Egregious Assumptions

Simplifying <u>assumptions</u> that too often aren't true:

- 1. Workload: We can optimize each query independently i.e., only one query is running at a time
- 2. **Predicate values fixed:** Values of predicates are known & fixed i.e., no parameter markers or host variables
- 3. Independence: Selectivities of predicates are mutually independent i.e., univariate distributions of columns suffice
- 4. Subsumption: Joins are on domains, one of which subsumes the other i.e., Primary Key and Foreign Key
- 5. Weighting: Certain types of cost (I/Os, memory, CPU) dominate others, which can be ignored
- 6. Additivity: Estimated costs can be simply added together i.e., nothing ever happens in parallel, and even if they do... ...they all start at the same time
- 7. Non-relational data: Relational data dominates i.e., we don't need no stinkin' hierarchies / repeating groups!
- 8. **Detail:** More detailed models are more accurate

Assumption #1: Workload Independence

- Assumes: Each query can be optimized <u>once, by itself</u>
- Reality: Queries affected by concurrent workload
- Other queries and applications compete for resources, e.g.,
 - Memory & caches used for buffer pool, hash tables, ...
 - CPU
 - Bandwidth
- These may will vary from run to run of a given query!
- <u>Cannot know</u> *a priori* what will be running concurrently!
 - "Your mileage may vary."
- Example: Buffer pool available to query determines disk I/Os in very complicated, non-linear way (e.g., table all fits vs. 1 page over)

Assumption #2: Predicate Values Fixed

- Assumes: Predicate constants are fixed & known at optimization time
- Reality: Applications <u>love</u> parameter markers & host variables, whose distribution of occurrence is <u>unknown</u> to the optimizer
- Related to Assumption #1: each execution occurrence may differ!
- Customer "war story":
 - *SubsystemID* added retroactively to all tables & predicate on it to all queries
 - 6 possible values
 - But one value occurs 99% of the time in app (the original subsystem)
 - What should the selectivity of "*SubsystemID* = ?" be?
 - DB2 calculates selectivity as 1/distinct values, so 1/6 = .167
 - Reality: 0.99 if ? = 1; else < 0.01
- What's the best strategy for re-compiling?
 - Every query execution? Expensive!
 - Just the first execution, assuming a "typical" value? Inaccurate!
 - Some compromise? What?

Assumption #3: Predicate Independence

- Assumes: Predicates are mutually independent
- Reality: Attributes can be correlated, even across tables!
- Originates from System R and Ingres Optimizers
- Assumes: $f(c_1, c_2, c_3, ..., c_N) = f(c_1) * f(c_2) * f(c_3) * ... * f(c_N)$
- Significantly simplifies:
 - **Statistics collection** do for each column independently (N distributions vs. 2^N)
 - Selectivity estimation just multiply selectivities of conjuncts!
- Problems:
 - Customers are unaware of
 - existence of correlation among attributes
 - its impact on optimization, think "more is better"
 - Result:
 - Can significantly under-estimate cardinalities!
 - Incorrectly favors nested-loop joins **disaster**!
- Examples: "war stories" from real customer databases (next 3 slides):
 - 1. Honda Accords
 - 2. "More is better" predicates
 - 3. Cross-table predicates and intersections in star schemas

Correlation Example #1: Honda Accord

• Problem:

- Database for governmental car registration agency
- WHERE *Make* = 'Honda' AND *Model* = 'Accord'
- Suppose, for ease of exposition, ...
 - 10 *Makes* ==> selectivity(*Make*) = 1/10
 - 100 *Models* ==> selectivity(*Model*) = 1/100
- So selectivity of both = 1/10 * 1/100 = 1/1000
- But only Honda makes an Accord model, by trademark law!
- We <u>assumed</u> the predicates were independent by multiplying their selectivities!
- In fact, *Model* <u>functionally determines</u> <u>Make</u> (predicate on <u>Make</u> really adds no information)!
- Effect: We <u>under-estimated</u> cardinality by an order of magnitude!

• In general,

- Can be among <u>any subset</u> of (perhaps <u>dozens</u> of) predicates in the WHERE clause
- How do we know which subset of predicates caused the error?
- How do we generalize to <u>all</u> instances of *Make* and *Model*?
- What happens if we <u>repeat</u> the <u>same</u> predicates, and optimizer doesn't remove them?

Correlation Example #2: "More is Better"

• Context:

- Major U.S. Insurance Company
- Complex query joining 10s of tables (EXPLAIN print-out was > 2 cm. thick)
- 10M-row table *AccountHolders* had these predicates (using me as example):
 - NameLast = 'Lohman'
 - NameFirst = 'Guy'
 - NameMiddleInitial = 'M'
 - AddressStreet = '1114 Virgil Place'
 - AddressCity = 'San Jose'
 - AddressState = 'CA'
 - AddressZip = '95120'
 - SocSecNum = '123-45-6789'

- Adding <u>one predicate</u> to query degraded performance from a few seconds to > 1 hour!!
- **Problem:** Can you figure out WHY?
- Hints:
 - Cardinality estimate for *AccountHolders* decreased by 10⁻⁷ in modified query
 - Added predicate: *PersonID = 'LOHMGM951206789'* (concatenation of name, zip, & SSN)
- Solution:
 - Predicate is <u>completely redundant</u> (correlated to others)!!
 - Developer thought it would help this query, because there was an index on it
 - It <u>might</u> help the execution, if that index was picked, ...
 - BUT it caused under-estimation of cardinality, changing join type from Hash to Nested-Loop

Correlation Example #3: Cross-Table Correlation

- EXAMPLE Query to Star Schema:
 - *City* = '*San Jose*': 10s of millions of sales in all San Jose stores!
 - *Month* = '*December*': 100s of millions of sales in December!
 - *Brand* = '*Levi Dockers*': millions of Levi's Dockers!
- TOGETHER:
 - Probably only thousands of Levi Dockers sold in San Jose stores in December!!
 - But might be much higher if there was a promotion, or lower if competitor did
 - "It depends!"

Assumption #4: Subsumption in Joins

- Assumes: One domain in a join subsumes the other, i.e., PrimaryKey joined with ForeignKey
- Reality: It Depends!
- System R assumed this with following formula for join cardinality: $|T_1 join_{X=Y} T_2| = |T_1| * |T_2| / Max \{ |X|, |Y| \}$ where X is a column in T_1 and Y is a column in T_2
- When *X* is a PrimaryKey and *Y* is a ForeignKey,
 - *Domain (PK)* <u>subsumes</u> *Domain (FK),* so ...
 - |X| > |Y| and $|X| = |T_1|$, so ...
 - *JoinCard* = $|T_2|$ (the FK table, usually the bigger one)
- Fortunately, most joins <u>are</u> on PK FK!
- BUT ... Not necessarily! Could be....
- Example: Join online logs to transactions table on *Date* and *Timestamp* columns

Assumption #5: Weighting in Costs

- Assumes: Certain resources dominate others
- Reality: It Depends!
- Early Optimizers (e.g., System R) assumed disk I/O dominated CPU
 - The mysterious factor H = 1/3 (for CPU)
 - But some operations (e.g., SORT) use much more CPU than others (e.g., SCAN)
- Better (e.g., in Starburst, DB2 LUW, and many others):
 - Linear combination: $\mathbf{Cost} = w_1 * \mathbf{I/O} + w_2 * \mathbf{CPU} + w_3 * \mathbf{Comm}$
 - Weights **w**_i

•

- Convert <u>unit-less counts</u> (e.g., I/Os, instructions, message blocks) to time (msec.)
- Must be determined by system <u>automatically</u> and <u>empirically</u> (measured mile)
- I/Os further broken down into Random and Sequential I/Os
- **BUT** still <u>assumes</u> these cost components are <u>additive</u> (no parallelism) ... see next slide!

Need to modernize by adding:

- Cost of lock granularity (row vs. table) and duration
 - How weight this?
- Multi-core parallelism
- Cache awareness
- Compression and de-compression costs
- Cloud metrics (total resources, SLA penalties,...)
- So much more...

Assumption #6: Additivity in Costs

- Assumes: Costs can simply be added together, i.e., <u>Nothing</u> happens in parallel, and even if they did, They start at the <u>same time</u>
- Reality: Lots of parallelism among I/O, CPU, & Network!
- Additivity benefits:
 - Simplifies cost calculations
 - Avoids cost functions like *Max* { *time*₁, *time*₂, *time*₃ }
 - <u>Required</u> by **Principle of Optimality** for Dynamic Programming
- But ...
 - Is it realistic? Maybe for queries run on AWS
 - What if overlap is partial?
 - Don't forget: other, unknown queries & apps run concurrently (violating Assumption #1)!

Assumption #7: Relational Data Dominates

- Assumes: Most data is simple, relational tables, i.e., <u>No</u> JSON, XML, etc., i.e., <u>No:</u>
 - objects
 - structures of hierarchies
 - arrays or repeating groups

- navigational query constructs
- Reality: Brave new world of non-tabular data (JSON, XML,...)!
- Benefits of assuming relational:
 - Simplifies cardinality and cost calculations, run-time, statistics, etc.
 - Preserves commutativity and associativity of operations
 - Avoids adding non-relational operations that might interfere with reordering opns.
- But ...
 - Prohibits user-defined operations that might not be commutative or associative
 - Limits supported apps and platforms (Spark, Hadoop)

Assumption #8: Detail Improves Model

model more brittle!!!

- Assumes: Increasing model detail improves accuracy
- Reality: More detail **more** assumptions
- Our natural reaction to wrong plans is to embellish the model
 - Specifically in the area where we went wrong
 - A more detailed model <u>must</u> be more accurate, right?
- But, but, but ... Additional details inevitably
 - Contain additional assumptions
 - Require additional statistics
- Query Optimization Conundrum:

The details are not the details. They make the design. Charles Eames

More detailed optimizer models risk increased brittleness, because there are more places to go wrong.

- Example: Adding a detailed model of multi-core parallelism adds assumptions about:
 - Relative start times of parallel threads
 - Cache utilization
 - % of stalls
 - etc.

In Fact,

Richer Plan Repertoire can be Counter-Productive!

• Reference: N. Reddy and J. R. Haritsa. *Analyzing plan diagrams of database query optimizers*. VLDB 2005.

What's a Conscientious Optimizer Guru to Do?

- Avoid Unvalidated Assumptions:
 - Minimize the number (KISS!)
 - Explicitly validate that they hold or don't! for the application
 - Or at least be on the alert for their impact!
- Exploit:
 - 1. Improved statistics about correlations
 - 2. Actuals (e.g., observed cardinalities) or samples whenever possible
 - 3. Plans that **adapt** to learned information
 - 4. Robust execution strategies
- Use <u>measurable reality</u> as metric (e.g., execution time), <u>not</u> relativism (fudge factors beget more fudge factors)
- <u>Thoroughly validate</u> our cardinality and cost models!

Solution #1: Proactively Finding Correlations using CORDS

(**COR**relation **D**etection by **S**ampling)

- **1.** Sample each column to determine
 - Keys
 - Possible joins

2. Sample pairs of columns to determine correlations

- Within a table
- Across joinable tables

3. Determine correlation of each pair

Reference: •

Ilyas, Markl, Haas, Brown, & Aboulnaga: CORDS: Automatic Discovery of Correlations and Soft Functional Dependencies. SIGMOD 2004, 647-658

Key:

- Yellow = attributes
- Red = key attributes
- Green dashed lines = functional dependencies
- Blue lines = correlation (width = strength)

Solution #2: Learn from past mistakes! The LEarning Optimizer(LEO)

- <u>Default</u> is to collect statistics on <u>individual</u> columns
- *LEO* automatically determines **statistics profiles**
 - What statistics are needed for this workload?
 - Column groups to collect statistics on
 - Too many to collect all combinations of columns
 - Detects correlation between columns, e.g.
 - WHERE *Make* = 'Honda' AND *Model* = 'Accord'
 - By comparing actual cardinalities to optimizer's estimates
 - True learning with feedback!
- Improves access plan selection in <u>future</u> queries

Reference: Stillger, Lohman, Markl, Kandil: LEO – DB2's LEarning Optimizer, VLDB 2001 (Rome, Sept. 2001), 19-28

Traditional Query Optimization (without LEO)

EXPLAIN Gives Optimizer's Estimates

<u>New</u>: Capture Actual Number of Rows!

Figure Out Where the Differences Are

Augment Statistics with Adjustments

Exploit: Learning in Query Optimization!

A Danger with Actuals: "Fleeing from Knowledge to Ignorance"

Reference:

Srivastava, Haas, Markl, Kutsch, Tran: *ISOMER: Consistent Histogram Construction Using Query Feedback*. **ICDE 2006**: 39

Solution #3: Why Wait Till the Query is Finished? Progressive OPtimization (POP)

Reference: Markl, Raman, Simmen, Lohman, Pirahesh: *Robust Query Processing through Progressive Optimization*. **SIGMOD 2004:** 659-670

Save Partial Results and Actual Cardinality

Re-optimize using actual cardinality

Create new best plan, using actuals

Execute new plan, optionally using earlier results

Solution #4: More Robust Execution Strategies: "Bloom Joins" in DB2 BLU

Refn: Barber, Lohman, Raman, Sidle, Lightstone, Schiefer: *In-memory BLU acceleration in IBM's DB2 and dashDB: Optimized for modern workloads and hardware architectures.* **ICDE 2015:** 1246-1252

Don't Forget...

The <u>Real</u> Goal of Query Optimization is... <u>NOT</u> to find the Very Best Plan, but to Avoid the Really Bad Plans

Validating an Optimizer's Model(s)

- Any unvalidated model isn't worth the paper it's written on!
- Currently done by exception:
 - When customer complains about a "bad plan", or
 - When a test case breaks
 - BUT this severely limits the validation process to a few breakpoints
- Need to compare optimizer's choice (estimate) to <u>actual</u> best plan!
- Requires testing <u>all permutations</u> of:
 - Possible values in its parametric space
 - <u>All</u> database designs (normalization, indexes, partitioning,...), even bad designs!
 - <u>All</u> table characteristics (statistics, values!)
 - <u>All</u> SQL queries, of arbitrary complexity
 - values of parameter markers
 - negation and disjuncts
 - inequality join predicates
 - complex SQL constructs (CASE statements, subqueries, 4-page queries, ...)
 - rare SQL constructs & corner cases
 - Environments
 - Hardware
 - Not just the latest & greatest!
 - Any degree of parallelism, on any number of nodes
 - Competing workloads on same system
- But this is a huge, <u>daunting</u>, <u>probably impossible</u> task!!
- Gets harder the more complex the model
- Some modest attempts:
 - Mackert & Lohman, R* Optimizer Validation and Performance Evaluation for Local Queries. SIGMOD 1986: 84-95
 - Mackert & Lohman, *R** Optimizer Validation and Performance Evaluation for Distributed Queries. VLDB 1986: 149-159
 - Leis, Gubichev, Mirchev, Boncz, Kemper, Neumann: *How Good Are Query Optimizers, Really?* PVLDB 9(3) (2015): 204-215

Conclusions

- Query optimization is generally very successful
- Optimizers are mathematical models
 - Assumptions underlying those models can cause <u>order-of-</u> <u>magnitude errors</u>
 - Especially in cardinality, the "Achilles' Heel" of optimization
 - Need to minimize impact of assumptions
 - Need to validate our optimizer models thoroughly
 - Requires determining the right metric
 - Requires testing all permutations of data, statistics, & environment
- Numerous problems still remain, but researchers are (generally) ignoring the important ones!

What ARE the Important Ones?

Should focus on areas having the most impact:

- **Detect and correct correlations**, especially across joins
- More realistically model the increased...
 - **Dynamic aspects** from one execution of a query to the next
 - **Competition for resources** among concurrent queries & apps
 - Parallelism among resources
- Automatically learn from prior or current execution
- Automatically adapt plans to new information from
 - Prior executions
 - This execution
- Devise **robust execution strategies** that are less sensitive to estimation errors
- Model modern environments
 - Multi-core
 - Cloud metrics, including SLA penalties
 - Big Data applications
 - May not have basic statistics!
 - May have "foreign" optimizers

Ευχαριστώ!

Greek

Hindi

Traditional Chinese

Спасибо

Russian

Arabic

Obrigado Brazilian Portuguese

ขอบคุณ

Gracias

Spanish

Thai 9

Grazie Italian

Simplified Chinese

ありがとうございました

Danke German

> Merci French

நன்றி

Japanese

Korean