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1. Congratulations on Past Successes! 

2. Storm on the Horizon!  

3. Roadmap for Challenges Before Us

Outline for a Keynote Speech



Query Optimization 101
• What IS Query Optimization?

• A model of query performance for different execution plans
• Goal:  Pick the best-performing plan (more on this later!)

• Why is it needed?
• SQL is non-procedural (specify what, not how)
• Execution Plan is (roughly) implemented by relational operators:

• SELECT — apply a single-table predicate
• PROJECT — access columns
• JOIN — apply a multi-table join predicate 

• Relational operators form an algebra (Thanks, Ted Codd!) that is
• Commutative
• Associative

➡ Operators may be re-ordered!

➡ LOTS of possible plans (roughly exponential in # of tables)!
•  No one access method (index vs. scan) or algorithm (join method) dominates
•  Heuristics reduce the space somewhat:

• Predicate push-down: apply SELECT as soon as possible to eliminate unqualifying rows
• Cartesian product avoidance: defer Cartesian products, i.e., joining tables with no join predicate

               ➡ Depends upon the shape of the query graph
• Refn:  Ono & Lohman: Measuring the Complexity of Join Enumeration in Query Optimization. VLDB 1990: 314-325



Is Query Optimization Successful?
• Relational Databases are a WHOPPING SUCCESS:

• Relational database industry > $40B business in 2016!
• Wouldn’t have happened if optimization failed often enough

• Optimizers get the “right plan” most of the time
• SQL is (still)…

• widely accepted for writing database apps
• recognized as most successful declarative language
• used by 95% of Spark users, too! (Refn.: Spark Summit 2017)

• Many of today’s products derive from academia:
• Huge literature: 858 hits for “query.optimiz” on DBLP

• Endured & evolved as a “hot topic” for decades

• Many of today’s products derive from research prototypes
• original, extensible, object-relational, distributed, parallel, …

• So give yourselves a big pat on the back!



RDBMS is a YUGE Market!



But…LOTS of Problems Remain
• Even a small percent of “bad plans”…

• Contributes most to bad performance
• Breeds mistrust of the optimizer
• Fosters demands for “easy fixes” that hurt, don’t help 

• “Hints” are an admission of failure!
• Hint: user specifies (portion of) a plan for a query
• Tell optimizer how to do its job!
• Harder for DBA to do right for more complex queries
• Aren’t robust to changes in design, statistics, or environment

• “Fudge factors” in optimizer are even more undermining
• “Fudge factor”: Bias a cost in favor of (or against) a type of plan
• Unknowingly affect other queries (that might have been fine before!)
• Fudge factors beget more fudge factors, and yet more…

• Bad plans are the “tip of the iceberg”
• Indicate unseen problems lurking
• Will bite you at the least opportune time (Murphy’s Law)



Scope
• This talk covers…

• Cardinality and Cost Models
• Assumptions and their impact
• Some ways to avoid the impact of failed assumptions
• Research areas

• This talk does NOT cover…
• Rule-based Query Rewrite transformations
• Plan Enumeration strategies
• Yet another histogramming technique

• Focus on things having the most impact!
• Avoid “polishing the round ball”
• Look for order-of-magnitude errors



Thesis of This Talk:
Query Optimizers are Mathematical Models
• Optimizers model performance of each query plan that it considers
• Assumptions that underly the model must be 

• Carefully identified and understood, especially their potential impact
• Minimized for robustness
• Verified against application 

• Strict comparison to reality is the only robust metric
• Relativists and theoreticians need not apply!

• To be trustworthy, the model itself must be validated against reality for all…
• Possible permutations of values in its parametric space, i.e., its inputs:

• All database designs (normalization, indexes, partitioning,…), even bad designs!
• All table characteristics (statistics, even values!)
• All SQL queries, of arbitrary complexity (negation, disjuncts, 10-sigma constructs, subqueries, …)

• Environments
• Hardware 

• Not just the latest & greatest!
• Any degree of parallelism, on any number of nodes

• Competing workloads on same system

•             Requires an INCREDIBLE amount of testing!

• This Mission is Impossible, and no one has even attempted it



Our Most Egregious Assumptions
Simplifying assumptions that too often aren’t true: 

1. Workload:  We can optimize each query independently 
i.e., only one query is running at a time

2. Predicate values fixed:  Values of predicates are known & fixed 
i.e., no parameter markers or host variables

3. Independence:  Selectivities of predicates are mutually independent
i.e., univariate distributions of columns  suffice 

4. Subsumption: Joins are on domains, one of which subsumes the other
i.e., Primary Key and Foreign Key

5. Weighting:   Certain types of cost (I/Os, memory, CPU) dominate others, 
which can be ignored

6. Additivity:  Estimated costs can be simply added together 
i.e., nothing ever happens in parallel, and even if they do…
…they all start at the same time

7. Non-relational data:   Relational data dominates 
i.e., we don’t need no stinkin’ hierarchies / repeating groups! 

8. Detail:  More detailed models are more accurate



Assumption #1: Workload Independence

• Assumes: Each query can be optimized once, by itself
• Reality: Queries affected by concurrent workload
• Other queries and applications compete for resources, e.g.,

• Memory & caches used for buffer pool, hash tables, …

• CPU 

• Bandwidth

• These may will vary from run to run of a given query!

• Cannot know a priori what will be running concurrently!

• “Your mileage may vary.”

• Example: Buffer pool available to query determines disk I/Os in very 
complicated, non-linear way (e.g., table all fits vs. 1 page over)



Assumption #2: Predicate Values Fixed
• Assumes: Predicate constants are fixed & known at 

optimization time
• Reality: Applications love parameter markers & host variables, 

whose distribution of occurrence is unknown to the optimizer
• Related to Assumption #1:  each execution occurrence may differ!
• Customer “war story”: 

• SubsystemID added retroactively to all tables & predicate on it to all queries
• 6 possible values
• But one value occurs 99% of the time in app (the original subsystem)

• What should the selectivity of “SubsystemID = ?” be?
• DB2 calculates selectivity as 1/distinct values, so 1/6 = .167
• Reality:  0.99 if ? = 1;  else < 0.01

• What’s the best strategy for re-compiling?
• Every query execution?  Expensive!
• Just the first execution, assuming a “typical” value?  Inaccurate!
• Some compromise?  What?



Assumption #3: Predicate  Independence
• Assumes: Predicates are mutually independent
• Reality: Attributes can be correlated, even across tables! 
• Originates from System R and Ingres Optimizers
• Assumes:   f(c1, c2, c3, …, cN) = f(c1) * f(c2) * f(c3) * … * f(cN)
• Significantly simplifies:

• Statistics collection — do for each column independently (N distributions vs. 2N)
• Selectivity estimation — just multiply selectivities of conjuncts! 

• Problems: 
• Customers are unaware of 

• existence of correlation among attributes
• its impact on optimization, think “more is better”

• Result: 
• Can significantly under-estimate cardinalities!
• Incorrectly favors nested-loop joins — disaster!

• Examples: “war stories” from real customer databases (next 3 slides): 
1. Honda Accords
2. “More is better” predicates
3. Cross-table predicates and intersections in star schemas



Correlation Example #1: Honda Accord
•  Problem:

• Database for governmental car registration agency
• WHERE Make = 'Honda' AND Model = 'Accord'
• Suppose, for ease of exposition, …

• 10 Makes ==>    selectivity(Make)  = 1/10
• 100 Models ==> selectivity(Model) = 1/100

• So selectivity of both = 1/10 * 1/100 = 1/1000
• But only Honda makes an Accord model, by trademark law!
• We assumed the predicates were independent by multiplying their selectivities!
• In fact, Model functionally determines Make  

(predicate on Make really adds no information)!
• Effect: We under-estimated cardinality by an order of magnitude! 

• In general,
• Can be among any subset of (perhaps dozens of) predicates in the WHERE clause
• How do we know which subset of predicates caused the error?
• How do we generalize to all instances of Make and Model?
• What happens if we repeat the same predicates, and optimizer doesn’t remove them?



Correlation Example #2: “More is Better”
• Context:

• Major U.S. Insurance Company
• Complex query joining 10s of tables (EXPLAIN print-out was > 2 cm. thick)
• 10M-row table AccountHolders had these predicates (using me as example): 

• NameLast = ‘Lohman’
• NameFirst = ‘Guy’
• NameMiddleInitial = ‘M’
• AddressStreet = ‘1114 Virgil Place’
• AddressCity = ‘San Jose’
• AddressState = ‘CA’
• AddressZip = ‘95120’
• SocSecNum = ‘123-45-6789’

• Adding one predicate to query degraded performance from a few seconds to > 1 hour!!
• Problem: Can you figure out WHY?
• Hints:  

• Cardinality estimate for AccountHolders decreased by 10-7 
in modified query

• Added predicate:  PersonID = ‘LOHMGM951206789’ (concatenation of name, zip, & SSN)
• Solution:  

• Predicate is completely redundant (correlated to others)!!
• Developer thought it would help this query, because there was an index on it
• It might help the execution, if that index was picked, …
• BUT it caused under-estimation of cardinality, changing join type from Hash to Nested-Loop 



Correlation Example #3: Cross-Table Correlation
• EXAMPLE Query to Star Schema:

• City = 'San Jose':  10s of millions of sales in all San Jose stores!
• Month = 'December': 100s of millions of sales in December!
• Brand = 'Levi Dockers': millions of Levi's Dockers!

• TOGETHER: 
• Probably only thousands of Levi Dockers sold in San Jose stores in December!!
• But might be much higher if there was a promotion, or lower if competitor did
• “It depends!”

store_id

name
city
region
zip_code

 period_desc

descript
year
quarter
month
day

Store Dimension Table:

Period Dimension Table

brand
size
producer
caselot

product_id

Product Dimension Table

store_id
product_id
period_desc

dollars
units
price
sales

Sales Fact Table

-



Assumption #4: Subsumption in Joins
• Assumes: One domain in a join subsumes the other, 

i.e., PrimaryKey joined with ForeignKey
• Reality: It Depends! 
• System R assumed this with following formula for join cardinality:

|T1 joinX=Y T2| = |T1| * |T2| / Max { |X|, |Y| }
where X is a column in T1 and Y is a column in T2

• When X is a PrimaryKey and Y is a ForeignKey, 
• Domain (PK) subsumes Domain (FK), so …
• |X| > |Y| and  |X| = |T1|, so …
• JoinCard = |T2| (the FK table, usually the bigger one)

• Fortunately, most joins are on PK - FK!

• BUT … Not necessarily!  Could be….

• Example:  Join online logs to transactions table
 on Date and Timestamp columns

 X is
  PK

Y is FK

X Y



Assumption #5: Weighting in Costs
• Assumes: Certain resources dominate others
• Reality: It Depends! 
• Early Optimizers (e.g., System R) assumed disk I/O dominated CPU

• The mysterious factor H = 1/3  (for CPU)
• But some operations (e.g., SORT) use much more CPU than others (e.g., SCAN)

• Better (e.g., in Starburst, DB2 LUW, and many others):
• Linear combination:  Cost = w1 * I/O + w2 * CPU + w3 * Comm
• Weights wi 

• Convert unit-less counts (e.g., I/Os, instructions, message blocks) to time (msec.)
• Must be determined by system automatically and empirically (measured mile)

• I/Os further broken down into Random and Sequential I/Os
• BUT still assumes these cost components are additive (no parallelism) …see next slide!

• Need to modernize by adding:
• Cost of lock granularity (row vs. table) and duration

• How weight this? 
• Multi-core parallelism
• Cache awareness
• Compression and de-compression costs
• Cloud metrics (total resources, SLA penalties,…)
• So much more…



Assumption #6: Additivity in Costs
• Assumes: Costs can simply be added together, i.e.,

Nothing happens in parallel, and even if they did,
They start at the same time 

• Reality: Lots of parallelism among I/O, CPU, & Network! 

• Additivity benefits:
• Simplifies cost calculations
• Avoids cost functions like Max { time1, time2, time3 }
• Required by Principle of Optimality for Dynamic Programming

• But …
• Is it realistic?  Maybe for queries run on AWS
• What if overlap is partial?
• Don’t forget: other, unknown queries & apps run concurrently

(violating Assumption #1)!



Assumption #7: Relational Data Dominates
• Assumes: Most data is simple, relational tables, i.e.,

No JSON, XML, etc., i.e., 
No: 

• objects
• structures of hierarchies
• arrays or repeating groups
• navigational query constructs

• Reality: Brave new world of non-tabular data (JSON, XML,…)! 

• Benefits of assuming relational:
• Simplifies cardinality and cost calculations, run-time, statistics, etc.
• Preserves commutativity and associativity of operations
• Avoids adding non-relational operations that might interfere with reordering opns.

• But …
• Prohibits user-defined operations that might not be commutative or associative
• Limits supported apps and platforms (Spark, Hadoop)



Assumption #8: Detail Improves Model 
• Assumes: Increasing model detail improves accuracy
• Reality: More detail                   more assumptions

                                     model more brittle!!! 

• Our natural reaction to wrong plans is to embellish the model
• Specifically in the area where we went wrong
• A more detailed model must be more accurate, right?

• But, but, but … Additional details inevitably 
• Contain additional assumptions
• Require additional statistics

• Query Optimization Conundrum: 

More detailed optimizer models risk increased brittleness, 
because there are more places to go wrong.

• Example:  Adding a detailed model of multi-core parallelism adds assumptions about:
• Relative start times of parallel threads
• Cache utilization
• % of stalls
• etc.



In Fact, 
Richer Plan Repertoire can be Counter-Productive! 

• Reference:  N. Reddy and J. R. Haritsa. Analyzing plan diagrams of database query optimizers. VLDB 2005.



What’s a Conscientious Optimizer Guru to Do? 

• Avoid Unvalidated Assumptions:
• Minimize the number (KISS!)
• Explicitly validate that they hold — or don’t! — for the application 
• Or at least be on the alert for their impact!

• Exploit:  
1. Improved statistics about correlations 
2. Actuals (e.g., observed cardinalities) or samples whenever possible
3. Plans that adapt to learned information
4. Robust execution strategies

• Use measurable reality as metric (e.g., execution time), not 
relativism  (fudge factors beget more fudge factors)

• Thoroughly validate our cardinality and cost models!



Solution #1: Proactively Finding Correlations using  CORDS 
(CORrelation Detection by Sampling) 

Key:
• Yellow = attributes
• Red = key attributes
• Green dashed lines = functional dependencies
• Blue lines = correlation (width = strength)

1. Sample each column to determine
• Keys
• Possible joins

2. Sample pairs of columns to determine correlations
• Within a table
• Across joinable tables

3. Determine correlation of each pair
• Reference:  

Ilyas, Markl, Haas, Brown, & Aboulnaga: CORDS: Automatic Discovery of Correlations and 
Soft Functional Dependencies. SIGMOD 2004, 647-658



Solution #2: Learn from past mistakes!  
The LEarning Optimizer(LEO)

• Default is to collect statistics on individual columns
• LEO automatically determines statistics profiles

– What statistics are needed for this workload? 
– Column groups to collect statistics on 

•  Too many to collect all combinations of columns
•  Detects correlation between columns, e.g.
•  WHERE Make = ‘Honda’ AND Model = ‘Accord’
•  By comparing actual cardinalities to optimizer’s estimates
•  True learning with feedback!

• Improves access plan selection in future queries

I can't believe I 
did that!

Reference: Stillger, Lohman, Markl, Kandil: LEO — DB2's LEarning Optimizer, VLDB 2001 (Rome, Sept. 2001), 19-28



Plan 
Execution

Optimizer

Best 
Plan

Plan 
Execution

Optimizer

Best 
Plan

StatisticsSQL Compilation

Traditional Query Optimization (without LEO)

Query 
Optimization



EXPLAIN

Optimizer

Best 
Plan

Plan 
Execution

Optimizer

Best 
Plan

StatisticsSQL Compilation

Estimated 
Cardinalities
Estimated  

Cardinalities

EXPLAIN Gives Optimizer’s Estimates



Optimizer

Best 
Plan

Plan 
Execution

Optimizer

Best 
Plan

StatisticsSQL Compilation

Actual 
Cardinalities

Estimated 
Cardinalities

1. Monitor

Estimated  
Cardinalities

Actual  
Cardinalities

  New: Capture Actual Number of Rows!



Optimizer

Best 
Plan

Plan 
Execution

Optimizer

Best 
Plan

Statistics

Adjustments

SQL Compilation

Actual 
Cardinalities

Estimated 
Cardinalities

1. Monitor

2. Analyze

Adjustments

Estimated  
Cardinalities

Actual  
Cardinalities

  Figure Out Where the Differences Are



Plan 
Execution

Optimizer

Best 
Plan

Plan 
Execution

Optimizer

Best 
Plan

Statistics

Adjustments

SQL Compilation

Actual 
Cardinalities

Estimated 
Cardinalities

1. Monitor

2. Analyze

3. Feedback

Adjustments

Estimated  
Cardinalities

Actual  
Cardinalities

  Augment Statistics with Adjustments



Plan 
Execution

Optimizer

Best 
Plan

Plan 
Execution

Optimizer

Best 
Plan

Statistics

Adjustments

SQL Compilation

Actual 
Cardinalities

Estimated 
Cardinalities

1. Monitor

2. Analyze

3. Feedback
4. Exploit

Adjustments

Estimated  
Cardinalities

Actual  
Cardinalities

  Exploit: Learning in Query Optimization!



Query Graph: 

A Danger with Actuals: 
“Fleeing from Knowledge to Ignorance”

Plan 1:         ( (A * K) * P) * S  

Plan 2:         ( (A * P) * (S * K)

Best Plan:   ( (A * S) * P ) * K

P

A

K

S

100X200 X

Reference: 
Srivastava, Haas, Markl, Kutsch, Tran: ISOMER: Consistent Histogram 
Construction Using Query Feedback. ICDE 2006: 39 

300
X

1020
40

3050



Solution #3: Why Wait Till the Query is Finished?
Progressive OPtimization  (POP)

Optimizer

Best Plan

Plan 
Execution

with CHECK

Optimizer

Best Plan
With CHECK

Statistics
SQL Compilation

Reference: Markl, Raman, Simmen, Lohman, Pirahesh: Robust Query Processing 
through Progressive Optimization. SIGMOD 2004: 659-670



Save Partial Results and Actual Cardinality

Optimizer

Best Plan

Plan 
Execution

with CHECK

Optimizer

Best Plan
With CHECK

Statistics
SQL Compilation

“MQT”with 
Actual 

Cardinality

Re-optimize
 If CHECK Error

Partial Results
1

2

▪ For long-running, complex queries
▪ Re-thinks plans mid-way… 
▪ …If actual and estimated cardinality 

differ significantly 
▪ May re-use partial results



Re-optimize using actual cardinality

Optimizer

Best Plan

Plan 
Execution

with CHECK

Optimizer

Best Plan
With CHECK

Statistics
SQL Compilation

“MQT”with 
Actual 

Cardinality

Re-optimize
 If CHECK Error

Partial Results
1

2

3

▪ For long-running, complex queries
▪ Re-thinks plans mid-way… 
▪ …If actual and estimated cardinality 

differ significantly 
▪ May re-use partial results



Create new best plan, using actuals

Optimizer

Best Plan

Plan 
Execution

with CHECK

Optimizer

Best Plan
With CHECK

Statistics
SQL Compilation

“MQT”with 
Actual 

Cardinality

Re-optimize
 If CHECK Error

Partial Results

New Best Plan

1

2

34

▪ For long-running, complex queries
▪ Re-thinks plans mid-way… 
▪ …If actual and estimated cardinality 

differ significantly 
▪ May re-use partial results



Execute new plan, optionally using earlier results

Optimizer

Best Plan

Plan 
Execution

with CHECK

Optimizer

Best Plan
With CHECK

Statistics
SQL Compilation

“MQT”with 
Actual 

Cardinality

Re-optimize
 If CHECK Error

Partial Results

New Best Plan

New 
Plan 

Execution

1

2

34
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▪ For long-running, complex queries
▪ Re-thinks plans mid-way… 
▪ …If actual and estimated cardinality 

differ significantly 
▪ May re-use partial results



Solution #4: More Robust Execution Strategies: 
“Bloom Joins” in DB2 BLU

Scan &  
Apply Local 
Predicates

Thread 1

P2

P3

P4

P1
Thread A HT 1

Thread B HT 2

Thread C HT 3

Thread D HT 4

Load Join 
Column(s), 
 Re-encode, & 
Build Join 
Filter

Load 
Payloads

D
im

en
si

on
 T

ab
le

(s
)

[Build Phase]

Partition

Scan & 
Apply Local 
Predicates

Load Join 
Column(s), 
 Re-encode, & 
Build Join 
Filter 

Load 
Payloads Partition

Thread 2

Compacted 
Hash Tables

Join 
with 
Dim2

P1
Lookup

HT 1

P2
Lookup

HT 2

P3
Lookup

HT 3

P4
Lookup

HT 4

Result 
payloads

Fa
ct

 T
ab

le

[Probe Phase]

Scan & Apply 
Local 
Predicates

Load Join 
Column FK1

Load Join 
Column FK2

Apply Join 
Filter on FK1

Apply Join 
Filter on FK2

Partition a 
stride

De-partition 
Dim1 
payload(s)

Compacted 
Hash Tables

Refn: Barber, Lohman, Raman, Sidle, Lightstone, Schiefer: In-memory BLU acceleration in IBM's DB2 and dashDB: 
Optimized for modern workloads and hardware architectures. ICDE 2015: 1246-1252



Don’t Forget…

The Real Goal of Query 
Optimization is…

NOT to find the Very Best Plan, 
but

to Avoid the Really Bad Plans



Validating an Optimizer’s Model(s) 
• Any unvalidated model isn’t worth the paper it’s written on!
• Currently done by exception:

• When customer complains about a “bad plan”, or
• When a test case breaks
• BUT this severely limits the validation process to a few breakpoints

• Need to compare optimizer’s choice (estimate) to actual best plan!
• Requires testing all permutations of: 

• Possible values in its parametric space
• All database designs (normalization, indexes, partitioning,…), even bad designs!
• All table characteristics (statistics, values!)
• All SQL queries, of arbitrary complexity 

• values of parameter markers
• negation and disjuncts
• inequality join predicates 
• complex SQL constructs (CASE statements, subqueries, 4-page queries, …)
• rare SQL constructs & corner cases

• Environments
• Hardware 

• Not just the latest & greatest!
• Any degree of parallelism, on any number of nodes

• Competing workloads on same system
• But this is a huge, daunting, probably impossible task!!
• Gets harder the more complex the model
• Some modest attempts:

• Mackert & Lohman, R* Optimizer Validation and Performance Evaluation for Local Queries. SIGMOD 1986: 84-95
• Mackert & Lohman, R* Optimizer Validation and Performance Evaluation for Distributed Queries. VLDB 1986: 149-159
• Leis, Gubichev, Mirchev, Boncz, Kemper, Neumann: How Good Are Query Optimizers, Really? PVLDB 9(3) (2015): 204-215 



Conclusions 

• Query optimization is generally very successful
• Optimizers are mathematical models 

•  Assumptions underlying those models can cause order-of-
magnitude errors
• Especially in cardinality, the “Achilles' Heel” of optimization
• Need to minimize impact of assumptions 

• Need to validate our optimizer models thoroughly
• Requires determining the right metric
• Requires testing all permutations of data, statistics, & environment

• Numerous problems still remain, but researchers are (generally) 
ignoring the important ones!



What ARE the Important Ones? 
• Detect and correct correlations, especially across joins
• More realistically model the increased… 

• Dynamic aspects from one execution of a query to the next
• Competition for resources among concurrent queries & apps
• Parallelism among resources

• Automatically learn from prior or current execution
• Automatically adapt plans to new information from 

• Prior executions
• This execution

• Devise robust execution strategies that are less sensitive to estimation errors
• Model modern environments

• Multi-core
• Cloud metrics, including SLA penalties
• Big Data applications

• May not have basic statistics!
• May have “foreign” optimizers

Should focus on areas having the most impact:
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Grazie

Gracias

Obrigado

Japanese

English

Merci
French

Russian

Danke
German

Italian

Spanish

Brazilian Portuguese
Arabic

Traditional Chinese

Simplified Chinese

Hindi

Tamil

Thai

Korean

Greek


