
B. Mitschang et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2017),

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 629

The Big Picture: Understanding large-scale graphs using

Graph Grouping with Gradoop

Martin Junghanns1, André Petermann1, Niklas Teichmann2, Erhard Rahm1

Abstract: Graph grouping supports data analysts in decision making based on the characteristics
of large-scale, heterogeneous networks containing millions or even billions of vertices and edges.
We demonstrate graph grouping with Gradoop, a scalable system supporting declarative programs
composed from multiple graph operations. Using social network data, we highlight the analytical
capabilities enabled by graph grouping in combination with other graph operators. The resulting
graphs are visualized and visitors are invited to either modify existing or write new analytical programs.
Gradoop is implemented on top of Apache Flink, a state-of-the-art distributed dataflow framework,
and thus allows us to scale graph analytical programs across multiple machines. In the demonstration,
programs can either be executed locally or remotely on our research cluster.

Keywords: Graph Analytics, Graph Algorithms, Distributed Computing, Dataflow systems

1 Introduction

Graphs are an intuitive way to model, analyze and visualize complex relationships among

real-world data objects. The flexibility of graph data models and the variety of existing

graph algorithms made graph analytics attractive to different domains, e.g., to analyze the

link structure of the world wide web [BP98], users of a social network [Ne10], protein

interaction in biological networks [Pa11] or business process executions in enterprise data

[Pe14]. In these domains, graphs are often heterogeneous in terms of the objects they

represent. For example, vertices of a social network may represent users and forums while

edges may express friendships or memberships. Further on, vertices and edges may have

associated properties to describe the respective object, e.g., a user’s name or the date a user

became member of a forum.

The property graph model [RN10, An12] is an established approach to model heterogeneous

networks. Figure 1(a) shows a property graph that represents a simple social network

containing multiple types of vertices (e.g., User and Forum) and edges (e.g., follows and

memberOf ). Vertices as well as edges are further described by properties in the form of

key-value pairs (e.g., name : Alice or since : 2015). However, while small graphs are an

intuitive way to visualize connected information, with vertex and edge numbers increasing up

to millions or billions, it becomes almost impossible to understand the encoded information

by mere visual inspection. One way to reduce complexity is the grouping of vertices and

edges to so-called super vertices and super edges of a summary graph supporting the analyst

in extracting and understanding the underlying information [THP08, Ch08, Ju17].

1 University of Leipzig, Database Group & ScaDS Dresden/Leipzig,

[junghanns,petermann,rahm]@informatik.uni-leipzig.de
2 University of Leipzig, Database Group & ScaDS Dresden/Leipzig, teichmann@studserv.uni-leipzig.de

[junghanns,petermann,rahm]@informatik.uni-leipzig.de
teichmann@studserv.uni-leipzig.de


630 Martin Junghanns, André Petermann, Niklas Teichmann, Erhard Rahm

Fig. 1: (a) shows an example social network; (b) shows the summary graph of a large social network

grouped by the user’s city including aggregate values expressing the oldest and youngest user’s age

per city and the number of edges among cities.

Graph grouping allows structural summarization and attribute aggregation by user-defined

vertex and edge properties. In Figure 1(b), the users of a social network are grouped by their

city property, i.e., each super vertex in the summary graph represents all users that live in

the same city. As the property graph model is schemaless, users may not necessarily provide

certain properties. Such users are grouped within a dedicated NULL vertex. Super edges

represent mutual relationships among the grouped vertices of the input graph. For example,

an edge between Dresden and Leipzig in the summary graph represents all edges of that

same type among users from Dresden and Leipzig. Besides the structural summarization,

graph grouping allows for attribute aggregation on super vertices and super edges. In our

example, each super vertex and super edge stores the number of elements it represents.

Super vertices additionally store the minimum and maximum year of birth among the users.

In the demonstration, we present the graph grouping operator [Ju17] of Gradoop [Ju16],

an open-source graph analytical system that implements the so-called Extended Property

Graph Model and that supports declarative operations on single property graphs as well

as collections of these. For example, given a social network similar to Figure 1(a), the

summary graph of Figure 1(b) can be easily declared by the following script:

summaryGraph = socialNetwork

.subgraph(

(vertex -> vertex [:label] == 'User '),

(edge -> edge[:label] == 'follows '))

.groupBy(

[:label , 'city '], [COUNT(), MIN('yob '), MAX('yob ')],

[:label], [COUNT ()])

We will demonstrate how Gradoop and its operators can be used to compute expressive

summary graphs. Since Gradoop is implemented on top of Apache Flink [Ca15], a

distributed state-of-the-art dataflow framework, demo programs can be executed either

locally or on our research cluster without modifying the program. In the following section,

we provide a brief overview about Gradoop and the Extended Property Graph Model. In

Section 3, we describe our demonstration scenario in more detail.



The Big Picture: Understanding large-scale graphs using Graph Grouping with Gradoop 631

2 Graph Grouping with Gradoop

Gradoop is a system for declarative graph analytics supporting the combination of multiple

graph operators and algorithms in a single program. Graph data is represented within

the Extended Property Graph Model (EPGM) [Ju16], which is based on the property

graph model [RN10], i.e., on directed multigraphs supporting identifiers, labels and named

attributes (properties) for vertices as well as edges. As an extension, the EPGM supports the

concept of logical graphs, which are logical partitions of a base graph. Thus, it is possible

to analyze single graphs as well as collections of these. Logical graphs also support labels

and properties, for example, to represent communities in a social network and to store their

number of users. Furthermore, logical graphs and collections are input and output of EPGM

operators which enables the composition of complex analytical programs. Gradoop already

provides operator implementations for graph pattern matching, subgraph extraction, graph

transformation, set operations on multiple graphs as well as property-based aggregation and

selection [Ju16]. Graph analytical programs are declared using a Java API representing the

domain specific language GrALa (Graph Analytical Language). Below the user-facing API,

graph operators and algorithms are mapped to the programming abstractions provided by

Apache Flink and thus, their execution can be scaled out across a cluster of machines. The

source code of Gradoop is available online under GPL license4.

Graph grouping extends the set of available graph operators in Gradoop. The operator

takes a single logical graph as input and computes a new logical graph, which we call a

summary graph. The operator signature for graph grouping in GrALa is defined as follows:

LogicalGraph.groupBy(

vertexGroupingKey [], vertexAggregateFunction [],

edgeGroupingKey [], edgeAggregateFunction []) : LogicalGraph

While the first argument is a list of vertex grouping keys, the second argument refers to a

list of user-defined or system-provided vertex aggregate functions. Analogously, the third

and fourth argument are used to define edge grouping keys and edge aggregate functions. In

our introductory example, the operator is parameterized using the symbol :label and the

property key city as vertex grouping keys. We use system-provided aggregate functions to

count the elements inside each group and to determine minimum and maximum year of birth.

The resulting super vertices adopt the label, the grouping property (e.g., city : Dresden) and

the results of the aggregate functions (e.g., count : 72,865). Edges are implicitly grouped by

the super vertices of their incident vertices and explicitly by their label and counted. In the

example, one can also see the composition of subgraph extraction and graph grouping. First,

a subgraph containing solely vertices of type User and edges of type follows is extracted

from the social network and forwarded to the grouping operator. The resulting summary

graph can be either used as input for another operator (e.g., pattern matching), stored in a

data sink or visualized.

4 http://www.gradoop.com

http://www.gradoop.com


632 Martin Junghanns, André Petermann, Niklas Teichmann, Erhard Rahm

3 Demonstration Description

In our demonstration, we show how Gradoop can be used to compute summary graphs from

social network data. We provide three example programs to cover distinct aspects of graph

grouping: (1) subgraph grouping analogous to our example, (2) type-dependent grouping

to declare grouping keys on individual labels and (3) graph grouping along dimensional

hierarchies for Graph OLAP scenarios [Ch08]. Example (2) and (3) require the graph

transformation operator to pre-process the input graph before the actual grouping. Visitors

are also invited to modify our example programs or to write new ones including further

operators (e.g., pattern matching) and plug-in algorithms (e.g., community detection).

The programs are presented and developed using the Gradoop Java API and executed

either locally on the demonstration laptop or remotely on our research cluster. We provide

real-world graphs and artificial social network data with up to 10 billion edges generated

by the LDBC data generator [Er15]. Gradoop provides multiple ways to visualize the

resulting summary graphs. In example (1), we will use our graph visualization EPGM-Viz5

(Figure 1(b)), in example (2), we will use the DOT output and GraphViz6, and in example

(3), we will utilize the Neo4j graph database to visualize the results7.

4 Acknowledgments

This work is partially funded by the German Federal Ministry of Education and Research

under project ScaDS Dresden/Leipzig (BMBF 01IS14014B).

References
[An12] Angles, R.: A Comparison of Current Graph Database Models. In: Proc. ICDEW. 2012.

[BP98] Brin, Sergey; Page, Lawrence: The Anatomy of a Large-scale Hypertextual Web Search
Engine. In: Proc. WWW. 1998.

[Ca15] Carbone, P. et al.: Apache Flink™: Stream and Batch Processing in a Single Engine. IEEE
Data Eng. Bull., 38(4), 2015.

[Ch08] Chen, C.; Yan, X.; Zhu, F.; Han, J.; Yu, P. S.: Graph OLAP: Towards online analytical
processing on graphs. In: Proc. ICDM. 2008.

[Er15] Erling, O. et al.: The LDBC Social Network Benchmark. In: Proc. SIGMOD. 2015.

[Ju16] Junghanns, M.; Petermann, A.; Teichmann N.; Gómez K.; Rahm E.: Analyzing Extended
Property Graphs with Apache Flink. In: Proc. SIGMOD NDA Workshop. 2016.

[Ju17] Junghanns, M.; Petermann, A.; Rahm E.: Distributed Graph Grouping with Gradoop. In:
Proc. BTW. 2017.

[Ne10] Newman, M.: Networks: An Introduction. 2010.

[Pa11] Pavlopoulos, G. A. et al.: Using graph theory to analyze biological networks. BioData
Mining, 4(1), 2011.

[Pe14] Petermann, A.; Junghanns, M.; Müller, R.; Rahm, E.: BIIIG: Enabling business intelligence
with integrated instance graphs. In: Proc. ICDE Workshops. 2014.

[RN10] Rodriguez, M. A.; Neubauer, P.: Constructions from Dots and Lines. arXiv, 2010.

[THP08] Tian, Y.; Hankins, R. A.; Patel, J. M.: Efficient Aggregation for Graph Summarization. In:
Proc. SIGMOD. 2008.

5 https://github.com/dbs-leipzig/EPGM-Viz

6 http://www.graphviz.org/

7 https://github.com/s1ck/flink-neo4j

https://github.com/dbs-leipzig/EPGM-Viz
http://www.graphviz.org/
https://github.com/s1ck/flink-neo4j

