
B. Mitschang et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2017),

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 625

Secure Cryptographic Deletion in the Swift Object Store

Tim Waizenegger1

Abstract: The secure deletion of data is of increasing importance to individuals, corporations as well
as governments. Recent data breaches as well as advances in laws and regulations show that secure
deletion is becoming a requirement in many areas. However, this requirement is rarely considered
in today’s cloud storage services. The reason is that the established processes for secure deletion
of on-site storage are not applicable to cloud storage services. Cryptographic deletion is a suitable
candidate for these services, but a research gap still exists in applying cryptographic deletion to large
cloud storage services. For these reasons, we demonstrate a working prototype for a secure-deletion
enabled cloud storage service with the following two main contributions: A model for offering high
value service without full plain-text access to the provider, as well as secure deletion of data through
cryptography.

Keywords: secure data deletion, cryptographic deletion, data erasure, records management, retention

management, key management, data shredding

1 Background

Cloud based storage solutions are a popular service today especially among consumers.

They are used for synchronizing data across devices, for backup and archiving purposes, and

for enabling access at any time from anywhere. But the adoption of such storage services

still faces many challenges in the government and enterprise sector. The customers, as well

as the vendors, have a desire to move these systems, or parts of these systems, to cloud

environments in order to reduce cost and improve the service. But security issues often

prevent customers from adopting cloud storage services.

Cloud storage providers address these issues by offering data encryption in various

configurations. The main difference in their implementation of data encryption is the

management of encryption keys, and especially the authority over master keys. Cloud

providers generally prefer an encryption system where they keep the master keys and have

access to unencrypted data. This enables the providers to operate on the customers’ data in

order to offer advanced services like indexing/searching the data or analyzing it. Generally,

a provider with access to unencrypted data is able to provide a higher quality and more

useful service to the customer. Providers that allow client-side encryption and do not store

any master keys do not have access to the data. They can only operate as data-dumps and

offer very limited features to the customer, which makes this an unpopular business model.

Another security aspect that is especially important to government and enterprise customers

is the secure removal of deleted data, i.e. disposing of data after its lifetime has passed. Recent

1 University of Stuttgart, Institute for Parallel and Distributed Systems, Applications of Parallel and Distributed

Systems, waizentm@ipvs.uni-stuttgart.de

waizentm@ipvs.uni-stuttgart.de

626 Tim Waizenegger

data breaches have shown that consumer data which was assumed to be deleted could be

restored by attackers, causing privacy issues [Os15]. Enterprises and especially governments

are bound by a myriad of regulations for information life cycle governance [EP16]. These

state specific requirements for how contracts, reports, personal information, and others have

to be stored, and when and how they have to be deleted.

Individuals, corporations as well as governments have a requirement for secure data deletion

for these reasons. Not only because they want to be compliant with the law, but also in order

to avoid storing compromising information when they do not have to.

Today, secure deletion is usually done by physically destroying storage media in the enterprise

and government sector. Individuals mostly rely on “virtual shredding” (i.e. overwriting

storage blocks). In a cloud storage scenario, both methods are no longer applicable. Physical

disks are shared among different applications and even customers. Providers use complex

tiered-storage setups or outsource the physical storage themselves. Identifying the physical

disks that need to be destroyed, or the blocks that need to be overwritten, becomes difficult

to impossible [DW10].

For these reasons, we propose to use data encryption in order to provide secure deletion;

i.e. apply cryptographic deletion to cloud storage services. We achieve this by using a

key-management based on our Key-Cascade approach [Ba16, Wa17]. We further propose

the separation of data and metadata in cloud storage services. This provides the opportunity

to encrypt the data client-side and only allow the provider access to metadata. This should

incentivize more providers to offer client-side encryption because they can still offer

advances services on the metadata.

In this demo, we present a cloud storage system with the two main contributions:

1. Separation of data and metadata to allow the provider to access unencrypted metadata

for enabling advances services.

2. Data encryption with a key management that enables cryptographic deletion.

2 MCM Functionality and Architecture

In order to benchmark our key-management mechanism and evaluate the data/metadata

separation, we built the Micro Content Management system MCM2 which will be presented

in this Demo.

MCM is based on Enterprise Content Management systems like Box3. It stores objects

and files inside storage containers in the Swift4 object store. Whole containers can be

transparently encrypted with a key-management mechanism that allows secure deletion of

individual objects. Our user interface allows uploading and retrieving files, setting retention

2 https://github.com/timwaizenegger/mcm-sdos

3 https://www.box.com

4 http://docs.openstack.org/developer/swift/

https://github.com/timwaizenegger/mcm-sdos
https://www.box.com
http://docs.openstack.org/developer/swift/

Secure Cryptographic Deletion in the Swift Object Store 627

dates and scheduling deletion, extracting and viewing metadata, and analyzing and graphing

analyses on this metadata. It also features interactive visualizations of the underlying key

management data structures.

Swift
Object Store

Metadata
Warehouse

SDOS Core

Metadata
Extractor

Content
Identiier

Metadata
Replicator

Content
Management

Metadata
analytics

Retention
Manager

Message
Persistence

Tasks &
Scheduling

M
es

sa
gi

ng

Bulk
load/retrieve

Bluebox UI

 Apache Kafka

 Swift REST

Public/Private
 Cloud Border

HTTP

 SQL

Generic
Swift client

 Existing Component

 Newly Developed

UI back end

←
 P

rivate | P
ublic →

Fig. 1: The Architecture of the Micro Content Management System.

Figure 1 shows the high level architecture of MCM. We use three data management

systems (bottom row of Figure 1): An Apache Kafka streaming platform for loosely coupled

communication, an SQL database for storing and analyzing the unencrypted metadata, and

a Swift object store that holds all the (encrypted) data objects. In order to interface the

encryption as well as retention management components with the Swift object store, we

designed these services as API proxies for the Swift REST protocol. This enables us to

use any unmodified Swift backend (e.g. SaaS) as well as any existing Swift clients. The

SDOS encryption and retention manager form a flexible pipeline. All MCM components

can run multithreaded or distributed to enable horizontal scaling and high availability. The

Kafka streaming platform is used for triggering the execution of jobs for metadata extraction

and replication as well as scheduled deletion of old objects. We use a separate metadata

warehouse, as Swift lacks advanced querying capabilities for metadata (only retrieving and

listing is possible). All the object metadata is primarily stored in Swift and then replicated

to the warehouse for analysis. This warehouse is implemented using a relational DBMS

because i) the metadata schema is known from the extraction phase and fits well with the

relational model, and ii) the intended analytical queries can easily be expressed in SQL.

The location where the components from Figure 1 run is critical to the security of the system.

In order to guarantee the secure deletion property, the content of the stored objects must

never leave a trusted environment in unencrypted form. The same must be guaranteed for

the encryption keys. Our SDOS encryption uses a tree structure for key management of

628 Tim Waizenegger

which only the root key must be kept secure. All other keys are stored encrypted on Swift

together with the data objects.

One possible separation of trusted/untrusted environment is given by the red line in Figure 1.

It shows that all the data storage system can be outsourced to the public (untrusted)

environment, because all sensitive data is encrypted. The metadata replicator only copies

data between Swift and the database, so it can run on a public cloud as well. The other

components handle sensitive, unencrypted data and the SDOS component has to manage

the root key, so these components need to run in a trusted environment. An enterprise cloud

gateway appliance could host these sensitive components on premise. Enterprise cloud

gateways are already used today for storage outsourcing, they could be equipped with our

approach to provide secure deletion as well.

3 Demo Overview

This Demo will show the theory behind cryptographic deletion and its key management

mechanism as well as present the Micro Content Management system as an example applica-

tion for cryptographic deletion. In the demo scenario, we will create new storage containers

with and without cryptographic deletion and show data ingestion and retrieval using different

client applications. Our Bluebox user interface features interactive visualizations of the key

management data structures. We will use the visualization to show how insertions/deletions

affect the key management data structure. We will demonstrate the proposed separation of

encrypted data and unencrypted metadata by extracting metadata from previously ingested

emails, pictures and documents. We then show how the tasks for metadata extraction and

replication are triggered, how the metadata warehouse tables look like, and how analyses

can be realized.

Screenshots of the application, as well as more details about its capabilities, can be found

on our github page: https://github.com/timwaizenegger/mcm-bluebox

References

[Ba16] Barney, Jonathan; Lebutsch, David; Mega, Cataldo; Schleipen, Stefan; Waizenegger, Tim:
Deletion of content in digital storage systems. US Patent 9,298,951, March 2016.

[DW10] Diesburg, Sarah M.; Wang, An-I Andy: A Survey of Confidential Data Storage and Deletion
Methods. ACM Comput. Surv., 43(1):2:1–2:37, December 2010.

[EP16] European Parliament, Council: Regulation (EU) 2016/679: General Data Protection Regula-
tion. Article 17 "Right to Erasure", 2016.

[Os15] Osborne, Charlie: Ashley Madison hack: How much user data did "Paid delete" function
obliterate? ZDNet Security, 2015.

[Wa17] Waizenegger, Tim; Lebutsch, David; Mega, Cataldo; Mitschang, Bernhard: Design and
Implementation of Efficient Key Management for Secure Cryptographic Data Erasure in
Large Cloud-Based Storage Systems. Under review for: EDBT 20th International Conference
on Extending Database Technology, 2017.

https://github.com/timwaizenegger/mcm-bluebox

