
B. Mitschang et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2017),

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 619

InVerDa – The Liquid Database1

Kai Herrmann2, Hannes Voigt1, Thorsten Seyschab1, Wolfgang Lehner1

Abstract: Multiple applications, which share one common database, will evolve over time by their
very nature. Often, former versions need to stay available, so database developers find themselves
maintaining co-existing schema versions of multiple applications in multiple versions—usually with
handwritten delta code—which is highly error-prone and explains significant costs in software projects.
We showcase InVerDa, a tool using the richer semantics of a bidirectional database evolution
language to generate all the delta code automatically, easily providing co-existing schema versions
within one database. InVerDa automatically decides on an optimized physical database schema
serving all schema versions to transparently optimize the performance for the current workload.

Keywords: Database evolution, Database versioning, Co-existing schema versions.

1 Introduction

Current relational database management systems (DBMS) do not support co-existing schema

versions within the same database properly. However, this is a very common requirement

in today’s information systems. While software developers use agile techniques to quickly

evolve running applications and frequently publish improved versions, the database is

the millstone around the neck. Current DBMSes force developers to migrate a database

completely in one haul to a new schema version. Keeping other schema versions alive

before and after such a migration typically requires manually written and maintained delta

code either in the database (views and triggers) or in the application. Further, finding an

optimal physical database schema that serves all co-existing schema versions is notoriously

hard, since the mix of mainly accessed schema versions changes over time. With all the

described challenges, handling co-existing schema versions within one database is very

costly, error-prone, and significantly slows down agile developers of information systems.

This demo3 showcases InVerDa (Integrated Versioning of Database schemas), which

provides a solution to this dilemma. InVerDa uses a declarative Database Evolution

Language (DEL) called BiDEL. With BiDEL developers can evolve an existing schema to

add a new schema version to a database. InVerDa makes the database instantly available

through all co-existing schema versions within the DBMS. Data can be read and written

through all schema versions; writes in one version are reflected in all other versions. To

account for changing workload mixes, InVerDa transparently optimizes the physical

database schema to continuously ensure a high performance without any further interaction

of the developer. Hence, InVerDa greatly simplifies handling co-existing schema versions.

1 This work is partly funded by the German Research Foundation (DFG) within the RoSI RTG (1907).
2 Technische Universität Dresden, Database Systems Group, Nöthnitzer Str. 46, 01187 Dresden, Germany

<firstname>.<lastname>@tu-dresden.de

3 Sneak preview and demonstrator available at https://wwwdb.inf.tu-dresden.de/research-projects/

projects/inverda

<firstname>.<lastname>@tu-dresden.de
https://wwwdb.inf.tu-dresden.de/research-projects/projects/inverda
https://wwwdb.inf.tu-dresden.de/research-projects/projects/inverda


620 Kai Herrmann, Hannes Voigt, Thorsten Seyschab, Wolfgang Lehner

BiDEL—InVerDa’s evolution language—provides Schema Modification Operators

(SMOs) to create, drop, and rename both tables and columns as well as splitting and merging

tables both vertically and horizontally. BiDEL is similar to established DELs [Cu13, He15],

with the distinction that its SMOs are specifically designed to be bidirectional. Based on a

BiDEL-specified evolution, InVerDa is able to generate all required delta code to make

the database instantly available through the new schema version and to propagate data both

forward and backward between all schema versions. BiDEL combines standard SMOs for

forward evolution with strategies to fill missing information and resolve ambiguity occurring

in backward evolution, essentially by adding to each SMO the arguments of its inverse

SMO. Since many SMOs are not information-preserving, InVerDa manages additional

auxiliary tables to keep the otherwise lost information. We have formally validated the

bidirectionality of BiDEL’s SMOs by showing that payload data from any schema version

N survives a round trip to version N + 1 and back to N unchanged and that the same holds

vice versa. Hence, each schema version appears like a full-fledged single-schema database.

As applications evolve over time, the user’s behavior—and hence the actual workload mix—

changes as well. InVerDa continuously monitors the workload: after significant changes in

the workload, InVerDa heuristically determines an optimized physical database schema,

migrates the data accordingly, and adapts all involved delta code to keep all schema versions

accessible. This automatic migration happens transparently to the users and developers

without any required interaction. The physical database schema materializes a subset of all

tables in all versions. InVerDa ensures that a specific table can be either accessed locally

(iff the table version is physically stored) or by propagating the data access through SMOs

to other physically stored table versions. Due to the guaranteed bidirectionality of BiDEL’s

SMOs, we can be sure that no data will be lost, regardless of the physical database schema.

The contributions of InVerDa are the (1) bidirectional DEL BiDEL, (2) automatic

generation of co-existing schema versions, and (3) transparent migration to an optimized

physical database schema—all on display in the demo. In the remainder, we introduce

InVerDa using a comprehensible example (Section 2) and outline demo details (Section 3).

2 InVerDa – User Perspective

Task author task prio

1 Ann Organize party 3

2 Ben Study for exam 2

3 Ann Write paper 1

4 Ben Clean room 1Todo author task

3 Ann Write paper

4 Ben Clean room

Task task prio author

1 Organize party 3 5

2 Study for exam 2 6

3 Write paper 1 5

4 Clean room 1 6

Author name

5 Ann

6 Ben

TasKy

Do! TasKy2

CREATE SCHEMA VERSION Do! FROM TasKy WITH

PARTITION TABLE Task INTO Todo WITH prio=1;

DROP COLUMN prio FROM Todo DEFAULT 1;

CREATE SCHEMA VERSION TasKy2 FROM TasKy WITH

DECOMPOSE TABLE task INTO task(task,prio), author(author) ON FOREIGN KEY author;

RENAME COLUMN author IN author TO name;

Fig. 1: Example.

We illustrate InVerDa’s co-existing schema version support, using the example of a simple

task management system called TasKy (cf. Figure 1). TasKy runs as a desktop application

backed by a central database. Users can create new tasks and list, update, or delete them.

Each task has an author and a priority with 1 being the most urgent priority. In the first

release, TasKy stores all its data in a single table Task(author,task,prio).



InVerDa – The Liquid Database 621

Development Time As TasKy gets widely accepted, we extend it by a third party phone

app called Do! to list the most urgent tasks. Do! uses a different database schema than

TasKy. The Do! schema consists of a table Todo(author,task) that contains merely tasks of

priority 1. Obviously, the initial schema version needs to stay alive for the broadly installed

TasKy. InVerDa greatly simplifies this job as it generates all the necessary delta code

automatically. The developer simply executes the BiDEL script for Do! (cf. Figure 1), which

instructs InVerDa to derive schema Do! from schema TasKy by creating a horizontal

partition of Task with prio=1 and dropping the priority column. Executing the script creates

a new schema including the view Todo with delta code for propagating data changes. When

a user adds a new entry into Todo, this will automatically insert a corresponding task with

priority 1 to Task in TasKy. Equally, updates and deletes are propagated to the TasKy schema

as well. In sum, the TasKy data is immediately available to be read and written through the

newly incorporated Do! app by simply executing the three lines of BiDEL script.

Over time, the TasKy application is further refined and improved. For the next release, called

TasKy2, it is decided to normalize the table Task into Task and Author. For an incremental

roll-out of TasKy2, the old version TasKy has to remain functional until all clients are

updated. Again, InVerDa does the job. When executing the BiDEL script as shown in

Figure 1, InVerDa creates the schema version TasKy2 and decomposes the table version

Task to separate the tasks from their authors while creating a foreign key to maintain the

dependency. Additionally, the column author is renamed to name. InVerDa generates delta

code to make the TasKy2 schema immediately available. Write operations to any of the

three schema versions are now propagated to all other schema versions.

Operating Time The physical tables initially used for storing the data are the unevolved

table versions. All other table versions are implemented with the help of delta code. The

delta code introduces an overhead on read and write accesses to new schema versions. The

more SMOs are between schema versions, the more delta code is involved and the higher is

the overhead. In the case of the task management system, the schema versions TasKy2 and

Do! require delta code to propagate data accesses to the physical table Task. Assume, some

weeks after releasing TasKy2 the majority of the users has upgraded to the new version and

heavily uses the mobile phone app, so that TasKy is still accessed but merely by a minority

of users. Hence, it is appropriate to migrate data physically e.g. to the table versions of the

TasKy2 schema and potentially replicating the data also for Do!’s Todo.

Traditionally, the database administrator decides on such a new physical database schema

and developers would have to write a migration script, which moves the data and implements

new delta code. All that can accumulate to some hundred lines of code, which need

to be tested intensively in order to prevent them from messing up the data. InVerDa

automatically optimizes the physical database schema and transparently runs the data

migration, maintaining transaction guarantees, and updates the involved delta code of all

schema versions. No developers need to be involved. All schema versions stay available; read

and write operations are merely propagated to different physical tables. In sum, InVerDa

allows users to continuously use all schema versions and developers to continuously develop

the applications without caring about the physical database schema for a single second.



622 Kai Herrmann, Hannes Voigt, Thorsten Seyschab, Wolfgang Lehner

3 InVerDa Ű Demonstrator

Fig. 2: InVerDa Explorer with TasKy and Do!.

For the sake of demonstration, InVerDa consist of three parts: (1) the InVerDa Console,

an Eclipse Plugin to write and execute BiDEL evolution scripts, (2) the InVerDa

Explorer, an application for conveniently browsing all co-existing schema versions, and

(3) the InVerDa Optimizer, a tool running in the background to continuously monitor

the workload and automatically optimize the physical database schema when necessary.

These components operate on top of a PostgreSQL database with common SQL statements.

Figure 2 shows the InVerDa Explorer with the versions TasKy and Do!; Task from TasKy

is physically stored as indicated by the small cylinder. The InVerDa Explorer allows

to manipulate data in any schema version and observe the effects in the other versions.

Inserting a task in Do! as shown, also adds the task in TasKy.

During the demo, we will present the prepared TasKy example. However, InVerDa is a

working system and we encourage participants to test it interactively with own scenarios. We

will execute BiDEL evolution scripts with the InVerDa Console and demonstrate the

genuinely co-existing schema versions by manipulating data with the InVerDa Explorer.

Participants can experience both the developer perspective by writing own BiDEL scripts,

and the user perspective by probing the generated delta code. They can also have a look

behind the scenes at the generated delta code. Further, we have prepared dynamic workloads

to show how InVerDa automatically adapts the physical database schema. We want to

stimulate discussions with practitioners about e.g. use cases and missing aspects as well as

with researchers about e.g. technical details and future research questions.

In sum, InVerDa allows multiple applications in multiple versions to share one common

database, each having an individual view on the data, while the physical database schema is

transparently adapted to a changing workload in the background. Using the richer semantics

of a DEL, InVerDa unburdens database administrators and developers from the costly and

error-prone tasks of managing co-existing schema versions manually.

References

[Cu13] Curino, Carlo; Moon, Hyun Jin; Deutsch, Alin; Zaniolo, Carlo: Automating the database
schema evolution process. VLDB Journal, 22(1):73–98, 2013.

[He15] Herrmann, Kai; Voigt, Hannes; Behrend, Andreas; Lehner, Wolfgang: CoDEL - A Relationally
Complete Language for Database Evolution. In: ADBIS 2015, Poitiers, France. volume 9282
of LNCS. Springer, pp. 63–76, 2015.


