
B. Mitschang et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2017),

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 611

Enabling Efficient Agile Software Development

of NoSQL-backed Applications

Uta Störl1, Daniel Müller2, Meike Klettke3, Stefanie Scherzinger4

Abstract: NoSQL databases are popular in agile software development, where a frequently changing
database schema imposes challenges for the production database. In this demo, we present Darwin, a
middleware for systematic, tool-based support specifically designed for NoSQL database systems.
Darwin carries out schema evolution and data migration tasks. To the best of our knowledge, Darwin
is the first tool of its kind that supports both eager and lazy NoSQL data migration.

Keywords: NoSQL Databases, Schema Management

1 Introduction

In application development, software releases that also change the database schema are a

common scenario [Cu08, RSB16]. Due to their schema-flexibility, NoSQL database systems

are very popular in such setups, especially with agile software development. However,

an outstanding challenge are situations where the structure of data already stored in the

production database no longer matches what the latest application code expects. Such legacy

data must be migrated. Today, many teams rely on custom-coded migration scripts, which is

expensive in terms of person hours, as well as error-prone. What is missing is a tool-based

support for an optional schema management in NoSQL database systems.

In [KSS14], we discussed the need for a schema-management component capable of

managing the schema, schema evolution, as well as data migration within NoSQL database

systems. A first prototype called Darwin, designed according to these requirements, was

sketched in [SKS15]. Now, we present a live demo of a significantly enhanced and extended

version of Darwin. The key contributions of this Darwin demo are:

• Darwin supports the complete schema management life cycle: Declaring an initial

schema, repeatedly applying schema changes, and migrating legacy data.

• Darwin features different options for carrying out data migration tasks. Developers

can choose a suitable approach for a given application development scenario.

• Darwin is implemented for different types of NoSQL database systems. A public

interface makes it easy to integrate further NoSQL database products.

1 Darmstadt University of Applied Sciences, uta.stoerl@h-da.de
2 Darmstadt University of Applied Sciences, daniel.n.mueller@stud.h-da.de
3 University of Rostock, meike.klettke@uni-rostock.de
4 OTH Regensburg, stefanie.scherzinger@oth-regensburg.de

uta.stoerl@h-da.de
daniel.n.mueller@stud.h-da.de
meike.klettke@uni-rostock.de
stefanie.scherzinger@oth-regensburg.de


612 Uta Störl, Daniel Müller, Meike Klettke, Stefanie Scherzinger

Fig. 1: The Darwin system architecture. Fig. 2: Darwin screenshot: Schema history.

2 Supporting Schema Management with Darwin

Darwin operates as middleware between the applications and the NoSQL database systems

(see Figure 1). Conceptually, Darwin can support any type of NoSQL database system.

Currently, the document stores MongoDB and Couchbase, as well as the column family store

Cassandra are supported. Darwin has a system-independent API (c.f. the Entity Manager in

Figure 1) that makes it easy to integrate other NoSQL systems. We next lay out the schema

management process and point out how Darwin supports each of its subtasks.

Initial Schema. We assume that an initial schema is available. As illustrated in Figure 3,

there are different ways to obtain this schema:

• The schema can be explicitly declared by the developers.5 The Darwin Web App (see

Figure 1) offers two options, either using the schema evolution language introduced

in [SSK13], or a graphical interface.

• The schema may be implicitly derived from Object-NoSQL mappers such as Hibernate

or Kundera, or from class declarations within the application code.

• The schema may be extracted from data persisted in the NoSQL database in a reverse

engineering step. Darwin implements schema extraction as proposed in [KSS15].

Schema Evolution. There are different strategies for declaring schema changes (illustrated

in Figure 3). Darwin uses the schema evolution language first proposed in [SSK13]. Upon

request, Darwin can also visualize the schema history, as shown in Figure 2.

• The schema changes may be declared explicitly. Again, Darwin offers two options,

using the schema evolution language or a graphical interface. Figure 4 shows an

example of a copy operation, declared in the graphical interface. The property score

5 An explicitly declared schema is no longer uncommon even for schema-flexible NoSQL databases. For instance,

with recent versions of MongoDB, an optional schema may be registered [Mon16].



Enabling Efficient Agile Software Development of NoSQL-backed Applications 613

Fig. 3: The schema management process end-to-end.

Fig. 4: Declaring a schema evolution operation using the graphical interface of Darwin.

is copied from each Player to the player’s Mission entities. Darwin then generates

the schema evolution operation accordingly:

copy Player.score to Mission where Player.id = Mission.pid.

• Another way is to implicitly derive schema evolution operations by analyzing changes

to the application code. Addressing this task is scheduled for future work.

• The third possibility is to incrementally maintain a schema: An initial schema is

extracted, and then maintained along with all updates to entities in the database. This

approach is also implemented within Darwin, based on ideas proposed in [La16].

Data Migration. Darwin further supports two data migration strategies [KSS14]:

• Darwin implements eager migration, where the entire legacy data is migrated as a

consequence of schema evolution. Eager migration can be explicitly initiated by users

of Darwin, or it can be declared as the default behaviour of Darwin.

• Darwin also implements lazy migration, where single entities are only migrated on

demand, when they are loaded by the application. This mechanism is triggered by

calls from the application code to the Darwin Persistence API.



614 Uta Störl, Daniel Müller, Meike Klettke, Stefanie Scherzinger

3 Demo Outline

Our demo shows how Darwin supports the schema management process end-to-end:

1. We start with schema extraction from synthetic gaming data persisted in the database.

2. Visitors of our demo may generate schema evolution operations using the graphical

interface (Figure 4) or declare changes in our schema evolution language. We cover

adding, removing, and renaming the properties of entities, as well as copying and

moving properties between different kinds of entities.

3. Afterwards, we inspect the schema history, as visualized in Figure 2.

4. We can interactively assess the impact of eager or lazy migration on the data instance.

4 Outlook

Our next step is to implement additional migration strategies besides eager and lazy

migration, to support a broad range of application needs [Kl16]. We further work on detailed

cost models for data migration, to help developers choose the most suitable approach.

Acknowledgements: We thank O. Haller, T. Landmann, T. Lehwalder, K. Möchel, H. Nkwinchu, and

M. Richter from the Darmstadt University of Applied Sciences for implementation work on Darwin.

References

[Cu08] Curino, Carlo; Moon, Hyun Jin; Tanca, Letizia; Zaniolo, Carlo: Schema Evolution in
Wikipedia - Toward a Web Information System Benchmark. In: Proc. ICEIS’08. 2008.

[Kl16] Klettke, Meike; Störl, Uta; Shenavai, Manuel; Scherzinger, Stefanie: NoSQL Schema
Evolution and Big Data Migration at Scale. In: Proc. SCDM’16. 2016.

[KSS14] Klettke, Meike; Scherzinger, Stefanie; Störl, Uta: Datenbanken ohne Schema? Heraus-
forderungen und Lösungs-Strategien in der agilen Anwendungsentwicklung mit schema-
flexiblen NoSQL-Datenbanksystemen. Datenbank-Spektrum, 14(2), 2014.

[KSS15] Klettke, Meike; Störl, Uta; Scherzinger, Stefanie: Schema Extraction and Structural Outlier
Detection for JSON-based NoSQL Data Stores. In: Proc. BTW’15. 2015.

[La16] Langner, Jacob: Entwicklung und Bewertung von Verfahren zur inkrementellen Schema-
Extraktion aus NoSQL-Datenbanken. Master’s thesis, University of Rostock, 2016.

[Mon16] MongoDB, Inc. MongoDB Manual: Document Validation, December 2016. https:
//docs.mongodb.com/manual/core/document-validation/.

[RSB16] Ringlstetter, Andreas; Scherzinger, Stefanie; Bissyandé, Tegawendé F.: Data Model Evolu-
tion using Object-NoSQL Mappers: Folklore or State-of-the-Art? In: Proc. BIGDSE’16.
2016.

[SKS15] Störl, Uta; Klettke, Meike; Scherzinger, Stefanie: Kontrolliertes Schema-Evolutions-
management für NoSQL-Datenbanksysteme. In: Proc. LWA 2015 Workshops: KDML,
FGWM, IR, and FGDB. 2015.

[SSK13] Scherzinger, Stefanie; Störl, Uta; Klettke, Meike: Managing Schema Evolution in NoSQL
Data Stores. In: Proc. DBPL’13. 2013.

https://docs.mongodb.com/manual/core/document-validation/
https://docs.mongodb.com/manual/core/document-validation/

