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Examples: Similarity search in metric spaces
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Searchable spaces

Metric spaces
I No (common) structure, only distance function obeying metric axioms

I Positivity: ∀x , y ∈ O : x 6= y ⇒ dx,y > 0,
I Symmetry: ∀x , y ∈ O : dx,y = dy,x ,
I Triangle inequality: ∀x , y , z ∈ O : dx,z ≤ dx,y + dy,z .

I Curse of dimensionality
I Expensive distance computation
I Single data item representation consumes much memory
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Index structures
The M-Tree

State of the art – Index structures for similarity search in metric spaces

Requirements
I Persistent storage of data in arbitary domains
I Linear storage complexity O(N)

I Efficient (sublinear) incremental changes and queries (range, kNN)
I Possibility for domain specific optimizations
I Query performance comparable to data of the intrinsic dimensionality

Existing Index structures
I Multiple existing structures
I Most have serious drawbacks, e.g.

I BK-Tree, Fixed Query Tree and derivatives only handle discrete distance
functions

I AESA and it’s derivatives have a quadratic storage complexity of O(N2)
I Vantage-Point-Tree and D-Index are static structures (no incremental

inserts/deletes)
I The Bisector Tree does not allow to minimize I/O
I Some structures only claim to be metric access structures but actually only

work in euclidian vector spaces (e.g. M+-Tree and BM+-Tree)
I Best baseline (fulfills most requirements): M-Tree and it’s variants
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Index structures
The M-Tree

The M-Tree (Ciaccia et al. 1997, Zezula et al. 2006)

Hierarchical space decomposition into hyperspherical nodes.

A leaf node consists of:
I Key value
I Distance to parent node
I Possibly pointer to full data

set

An inner node consists of:
I Key value
I Pointer to child nodes
I Radius of subtree
I Distance to parent node
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General ideas
Range query optimizations
(k) Nearest Neighbor Query optimizations

Improved search algorithms – Existing algorithms and optimizations

Basic principle:
I Recursive tree descend – test intersection of node and

query hypersphere

Optimization idea:
I d⊥n based on (expensive) dist.calculation: dn,q

I First try heuristic bound d⊥n,relaxed ≤ d⊥n using ⊥n ≤ dn,q

I If sufficient to exclude n, avoided calculation of dn,q

Examples of heuristics:
I Classic M-Tree: precomputed distance to parent node
I CM-Tree (Aronovich and Spiegler 2007): precomputed

bilateral child distances (nodewise AESA)
I Domain specific heuristic for Levenshtein distance:

I Bartolini et al. 2002: Bag heuristics
I EM-Tree: Domain specific Length heuristic
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General ideas
Range query optimizations
(k) Nearest Neighbor Query optimizations

Range Query

(Upper Bound) Enclosure: >n + rn ≤ rq/dn,q + rn ≤ rq

I Whole node n inside query hyperball
⇒ All elements below n in result set

Upper Bound Intersection: >n + rn > rq ≥ >n − rn

I Node n is intersected
I Needs to be expanded (without distance computation dn,q)

I But missing dn,q can make child distance heuristic less acurate
I can not test for enclosure based on dn,q + rn ≤ rq

Zero intervall: >n = ⊥n

I Determine distance without computation: dn,q := >n(= ⊥n)

Combination of heuristics
I E.g. new Length heuristics for edit distance
I ⊥n = mini(⊥n,i)

One Child Cut: |n| = 1
I n has only one child c – “aerial root”
I If n is expanded, c needs to be examined
⇒ Avoid examining n, directly examine c
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General ideas
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(k) Nearest Neighbor Query optimizations

Experimental data

Metric spaces:
I Range of euclidian vector spaces 2D–15D (10 clusters, gaussian drawn

points around cluster center)
I Levenshtein edit distance: Drawn from a pool of 270’000 lines of source

code
I Wafer deformations:

I 66’000 observed Wafer deformations in lithographic step of semiconductor
processing

I Difference-Wafer: Absolute difference of deformation on each surface point
I Distance: Integral of Difference-Wafer

Experiments:
I 10’000 entries per tree
I 1’000 queries per tree
I 100 repetitions
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General ideas
Range query optimizations
(k) Nearest Neighbor Query optimizations

Range Query optimizations – Experimental Results
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(k) Nearest Neighbor Query

I Query radius rq = maxe∈Fk {de,q} unknown, bound shrinks during search
I Order of expansion and timing of heuristics use matters

Classic algorithm:
I Expansion priority queue sorted by d⊥n = max{dn,q − rn, 0}

Evaluation:
I Minimizes number of node expansions (not distance calculations)
I Highly ineffective use of distance heuristics
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(k) Nearest Neighbor Query optimizations

(k) Nearest Neighbor Query – improvement in the EM-Tree

I General optimizations (multiple heuristics, One Child Cut, Zero intervall)
I A∗-like two-level expansion queue
I Insert nodes by heuristic dist.bound: d⊥n,approx = max{⊥n − rn, 0}(≤ d⊥n )

I If such node is removed off the queue, compute dn,q and d⊥n and reinsert

⇒ Minimal possible expansion effort
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(k) Nearest Neighbor Query Optimizations – Experimental Results
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Summary

Contributions
I Identification of general search optimization concepts to reduce distance

calculations
I Development of more efficient algorithms for

I Range Queries
I (k-) Nearest Neighbor Queries

I Easy extension of kNN-Query to any time algorithm
Outlook

I Analyze, measure and optimize search-I/O- and -time-effort
I Compare with approximate similarity search
I Compare with other metric index structures
I Additional index option for classic DBMS
I Optimize tree structure

I M-Tree is very similar to B-Tree
I But has considerable degrees of freedom when building the tree

(Split is neigher complete nor free of overlap)
I Investigate possibilities to intelligently use these degrees of freedom to

create a tree that can be searched more efficiently
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Thank you for your attention!
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