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Introduction

Examples: Similarity search in metric spaces
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Introduction

Searchable spaces

Searchable spaces
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Metric spaces

» No (common) structure, only distance function obeying metric axioms
> Positivity: Vx,y € O: x # y = dx,y >0,
> Symmetry:Vx,y € O : dx,y = dy x,
> Triangle inequality: Vx,y,z € O : dx,z < dx,y + dy. 2.

» Curse of dimensionality
» Expensive distance computation
» Single data item representation consumes much memory
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State of the art Index structures
The M-Tree

State of the art — Index structures for similarity search in metric spaces

Requirements

» Persistent storage of data in arbitary domains

» Linear storage complexity O(N)

» Efficient (sublinear) incremental changes and queries (range, kNN)

» Possibility for domain specific optimizations

» Query performance comparable to data of the intrinsic dimensionality
Existing Index structures

» Multiple existing structures
» Most have serious drawbacks, e.g.
» BK-Tree, Fixed Query Tree and derivatives only handle discrete distance
functions
» AESA and it's derivatives have a quadratic storage complexity of O(N?)
» Vantage-Point-Tree and D-Index are static structures (no incremental
inserts/deletes)
» The Bisector Tree does not allow to minimize /0O
> Some structures only claim to be metric access structures but actually only
work in euclidian vector spaces (e.g. M*-Tree and BM™-Tree)

» Best baseline (fulfills most requirements): M-Tree and it’s variants
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State of the art Index structures
The M-Tree

The M-Tree (Ciaccia et al. 1997, Zezula et al. 2006)

Hierarchical space decomposition into hyperspherical nodes.

A leaf node consists of: An inner node consists of:
» Key value > Key value
» Distance to parent node » Pointer to child nodes
» Possibly pointer to full data > Radius of subtree
set » Distance to parent node
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General ideas
Range query optimizations
(k) Nearest Neighbor Query optimizations

Improved search algorithms

Improved search algorithms — Existing algorithms and optimizations

Basic principle:
» Recursive tree descend — test intersection of node and
query hypersphere

Optimization idea:
» di based on (expensive) dist.calculation: dy g
» First try heuristic bound @ eaeq < o USING Ly < dhg
» If sufficient to exclude n, avoided calculation of dy 4
Examples of heuristics:
» Classic M-Tree: precomputed distance to parent node

» CM-Tree (Aronovich and Spiegler 2007): precomputed
bilateral child distances (nodewise AESA)
» Domain specific heuristic for Levenshtein distance:

> Bartolini et al. 2002: Bag heuristics
> EM-Tree: Domain specific Length heuristic
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General ideas
Range query optimizations

Improved search algorithms (k) Nearest Neighbor Query optimizations

Range Query

(Upper Bound) Enclosure: T, + i, < ry/dng+ 1 < Iq
» Whole node ninside query hyperball
= All elements below n in result set
Upper Bound Intersection: T+ >r>Thr—
» Node nis intersected
» Needs to be expanded (without distance computation d,q)

> But missing dn,q can make child distance heuristic less acurate
» can not test for enclosure based on dn,q + rn < rgq

Zero intervall: T, = 1,

» Determine distance without computation: dn.q := Tna(= Ln)
Combination of heuristics

» E.g. new Length heuristics for edit distance

> 1,= min,-(J_,,,,-)
One Child Cut: |n| =1

» n has only one child ¢ — “aerial root”

» If nis expanded, ¢ needs to be examined

=- Avoid examining n, directly examine ¢
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General ideas
Range query optimizations

Improved search algorithms (k) Nearest Neighbor Query optimizations

Experimental data

Metric spaces:
» Range of euclidian vector spaces 2D—-15D (10 clusters, gaussian drawn
points around cluster center)
» Levenshtein edit distance: Drawn from a pool of 270’000 lines of source
code

» Wafer deformations:
> 66’000 observed Wafer deformations in lithographic step of semiconductor

processing
» Difference-Wafer: Absolute difference of deformation on each surface point

» Distance: Integral of Difference-Wafer
Experiments:
» 10’000 entries per tree
» 1’000 queries per tree
» 100 repetitions
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General ideas
Range query optimizations

Improved search algorithms (k) Nearest Neighbor Query optimizations

e Query optimizations — Experimental Results
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General ideas
Range query optimizations

Improved search algorithms (k) Nearest Neighbor Query optimizations

Range Query optimizations — Experimental Results
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General ideas
Range query optimizations
(k) Nearest Neighbor Query optimizations

Improved search algorithms

(k) Nearest Neighbor Query

> Query radius ry = maxeer, {de,q} Unknown, bound shrinks during search
» Order of expansion and timing of heuristics use matters

Classic algorithm:
» Expansion priority queue sorted by di- = max{dnq — n,0}
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Evaluation:

» Minimizes number of node expansions (not distance calculations)
» Highly ineffective use of distance heuristics




General ideas
Range query optimizations

Improved search algorithms (k) Nearest Neighbor Query optimizations

(k) Nearest Neighbor Query — improvement in the EM-Tree

v

General optimizations (multiple heuristics, One Child Cut, Zero intervall)
A*-like two-level expansion queue
Insert nodes by heuristic dist.oound: diapprox = max{ Ly — ra, 0}(< diy)
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=- Minimal possible expansion effort
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General ideas
Range query optimizations

Improved search algorithms (k) Nearest Neighbor Query optimizations

(k) Nearest Neighbor Query Optimizations — Experimental Results
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Summary

Summary

Contributions
» |dentification of general search optimization concepts to reduce distance
calculations
» Development of more efficient algorithms for
> Range Queries
> (k-) Nearest Neighbor Queries
» Easy extension of kNN-Query to any time algorithm
Outlook
» Analyze, measure and optimize search-I/O- and -time-effort
» Compare with approximate similarity search
» Compare with other metric index structures
» Additional index option for classic DBMS
» Optimize tree structure
> M-Tree is very similar to B-Tree
> But has considerable degrees of freedom when building the tree
(Split is neigher complete nor free of overlap)

> Investigate possibilities to intelligently use these degrees of freedom to
create a tree that can be searched more efficiently
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Summary

Thank you for your attention!
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