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Optimizing Similarity Search in the M-Tree

Steffen Guhlemann! Uwe Petersohn? Klaus Meyer—Wegener3

Abstract: A topic of growing interest in a wide range of domains is the similarity of data entries. Data
sets of genome sequences, text corpora, complex production information, and multimedia content are
typically large and unstructured, and it is expensive to compute similarities in them. The only common
denominator a data structure for efficient similarity search can rely on are the metric axioms. One
such data structure for efficient similarity search in metric spaces is the M-Tree, along with a number
of compatible extensions (e.g. Slim-Tree, Bulk Loaded M-Tree, multiway insertion M-Tree, M 2-Tree,
etc.). The M-Tree family uses common algorithms for the k-nearest-neighbor and range search. In this
paper we present new algorithms for these tasks to considerably improve retrieval performance of all
M-Tree-compatible data structures.

Keywords: Metric databases, metric access methods, index structures, multimedia databases,
selectivity estimation, similarity search

1 Introduction

Collection and storage of large data sets gives rise to the necessity to also query and process
them. The data elements are typically large, unstructured, expensive to process and hardly
ever equal to each other. A natural type of query is thus the similarity query.

Hence, there is a need for a general index structure that supports similarity queries on
this kind of data. Examples of potential applications are search for genome sequences,
fingerprints, and faces [SMZ15], query by example in multimedia databases, machine
learning (e.g. k-nearest-neighbor classification or case-based reasoning), etc. Typical query
operators are classified in [DD15].

Such an index structure cannot use any structural information, since there is no (common)
structure in the data.# It can only rely on a generic metric distance function, which must
fulfill the axioms of a metric (non negativity, identity of indiscernibles, symmetry, and
triangle inequality). Further, this structure has to take into account that a single distance
computation can be extremely expensive and that very high dimensional data can fall under
the curse of dimensionality. Other requirements are the possibility to store the data on hard
disk (i.e. minimize I/O) and to incrementally add or remove entries from the index.
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For similarity search in metric spaces there exists a broad range of structures like BK-
Tree [BK73], Fixed Query Tree [Ba94], VP-Tree [Uh91], Bisector Tree [KM83], GNAT
[Br95], AESA [Vi86], D-Index [Do03], Metric Index [NBZ11], PPP-Code [NZ14], iDis-
tance [Ja05] and variations of these [CMNO1, CMN99, BO97, Yi93, Yi99, DN88, CNOO,
NVZ92, No93, MOV94, Sh77, BNCO03, DGZ03]. A good classification of metric index
structures is given by [He09]. Many of these index structures have serious drawbacks,
be it for example the restriction to discrete metric spaces (BK-Tree) or a quadratic space
complexity (AESA). Further, most of these data structures are inherently static (incremental
changes to the stored data are not possible or prohibitively expensive) and only designed to
minimize distance computation (and not for example I/O and in-memory tree traversal). An
exception is the M-Tree family [CPZ97, Ze06, CP98, Pa99, Sk03, Tr00, Tr02, Ci00] which
is thoroughly designed to be a dynamic index structure capable to perform in a broad range
of domains and optimizing both I/O and distance computations.> This M-Tree family has a
compatible structure and shares common query algorithms,® which are derived directly from
the corresponding queries on a B-Tree with only a few modifications. (Both trees share the
basic tree structure.) However, there are subtle differences. For one, the B-Tree divides the
space comprehensively and free of overlap, while the M-Tree does not. Second, the B-Tree
search only focuses on minimizing the number of disk accesses, while the main goal for the
M-Tree is to minimize the number of distance calculations. This leaves room for a more
thorough design of the query algorithms with regard to the requirements of similarity search
in metric spaces. In this paper new algorithms for the range and the k-nearest-neighbor
search are presented. Due to the compatible structure, these new algorithms are applicable
to the whole M-Tree family.

The outline of the paper is as follows. In Section 2 the basic structure of the M-Tree family
will be presented. Section 3 will introduce some generic optimizations applicable to different
kinds of search. The following Sections 4 and 5 will present specific optimizations of the
range search and the k-nearest-neighbor search, respectively. Finally Section 6 will show
some experimental results.

2 The M-Tree

2.1 The M-Tree Structure

The M-Tree [CPZ97, Ze06] family is used to index similarity in general metric spaces
relying only on a metric distance function. The trees grow and shrink dynamically as new
data are added or deleted. It is a multi-branch tree that can be configured to minimize I/O.
Its basic structure is quite similar to the B-Tree and the R-Tree.

5 A project seminar [Lal 1] compared different index structures in different domains. The M-Tree had by far the
best query performance in terms of necessary distance calculations.

6 Note, however, that there is a broad range of structures that also pretend to be an extension to the M-Tree, like the
Pivoting M-Tree [Sk04], the (B)M *-Tree [Zh05] or the CM-Tree [ASO7], but are not compatible to the M-Tree
and also do not have the advantages of the M-Tree. For example the (B)M *-Tree can only handle Euclidean
vector spaces for which better approaches like the kd-Tree exist.
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An M-Tree is structured as a hierarchical tree of hypersphere-shaped nodes. Each node entry
consists of a routing (pivot) element (which is the center of the hypersphere) and an allowed
distance between pivot and data stored below this node (the radius of the hypersphere).
Each node can have multiple subnodes up to a predefined capacity limit. All data belonging
to a subnode must have a distance to the parent pivot that is smaller than radius of the
parent-node hypersphere. Leaf nodes store links to the actual data. The tree grows in a
B-Tree-manner bottom-up, i.e., all leafs are at the same level (see Figure 1).

Fig. 1: Structure of an M-Tree [CPZ97]

During insertion of an entry or subnode c into a node n, the distance between n and ¢ must
be computed (e.g. to adjust the node radius). As a first optimization, Ciaccia et al. [CPZ97]
proposed in their original publication to store the parent-child distances along with the
child-node pointers. In search, these precomputed distances are used in conjunction with
the triangle inequality to bound the range of the distance of the child pivot to the query
object without actually computing it.

2.2 Basic Search Algorithm

Like common tree-search algorithms, similarity search in the M-Tree is basically a hierarchi-
cal tree descend pruning nodes whenever possible. In classic main-memory structures the
focus is on reducing tree-traversal operations. If data is persisted on paged external memory,
a second focus is on reducing I/O operations. For general metric spaces a third optimization
goal is necessary: Distance computations have to be avoided as they are usually way more
expensive than standard tree-traversal operations, and sometimes even I/O operations.”

In general, similarity queries in metric spaces can be rewritten as the search for all data
located in a hyperspheric query region centered in a query object. In case of the range query,
the radius is fixed as part of the query arguments. In case of a k-nearest-neighbor query, the
final search radius has to be determined during search.

The search starts at the root node. It always keeps a queue of unexpanded nodes, which may
contain data fulfilling the query. As a node is removed from the queue, its child nodes are

7 As a simple example consider the Levenshtein edit distance of long texts. A basic distance calculation consumes
time and space of O(N?) where N is the length of the texts. Reading the text from disk will require some time of
O(Seek + Read - N) where Seek and Read are constants. So, if the text is long enough, computing the distance
will easily exceed the time to read the text from disk. The problem is worse for most multimedia domains, where
one similarity calculation can be a complex optimization on its own.
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examined. If it can be guaranteed that the child node cannot contain search results, it can be
pruned. Otherwise it is enqueued in the expansion queue. If a leaf node is removed from the
queue, the actual data in it are classified as fulfilling the query criteria or not.

To prune a node 7 it has to be guaranteed that its hypersphere (center n, radius r,,) does not
intersect the query hypersphere (center ¢, radius r,).® In other words, it must be proven
that no data element e below 7 is closer to g than r,. In the following this closest possible
distance is denoted by d;- — implicitly referencing the current search center. For an inner
node this minimal possible distance is calculated using an (expensive) distance calculation
dp,4 and the triangle inequality by d;; = max(0, dp,,q — ). On the leaf level, the formula is
simplified to d} = d, 4. A node (or leaf) is pruned, if d;; > ry.

3 General Search Optimizations

The search approach described in Section 2.2 can be improved in a number of aspects
independent of the actual type of search.

3.1 Generalization of Existing Optimizations

During examination of a node n the minimum possible element distance d;- needs to be
calculated to make a justified pruning decision. By default, this calculation involves a
distance computation which is the search-cost driver.

A basic idea is to use heuristics to inexpensively retrieve a lower bound L,, on the distance

dy 4. Based on L1, a lower bound d+ on d} can be found without any distance
> n,relaxed n

calculation:

1L

n,relaxed = maX(O’ Ln— rn)'

In certain situations, it is possible to prune » based on drtre laxeq ONLY; saving the distance
calculation d,, , entirely. It has to be observed that 1, must never overestimate d, 4.
Otherwise a node might be pruned which contains valid results, leading to an incorrect
search. On the other hand, L,, should be as close as possible to d,, , as this allows to
prune nodes more often. A further criterion for an efficient search is that the effort of the
calculation of L, has to be negligible compared to the computation of d,, ;. Otherwise only
distance computations are saved, but search time is not.

In the literature several examples of such tests exist. Unfortunately they are hard-coded into
the respective algorithm without considering generalizability.

8 Note that in case of a k-nearest-neighbor query the query radius r, will only be determined during the search.
However, there will always be a known upper bound on this radius.
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3.1.1 Precomputed Distance to Parent Node

One of the optimizations was proposed by Ciaccia et al. [CPZ97] as part of the classic
M-Tree. As described in Section 2.1 each M-Tree node stores the distance to its direct parent
node. This neither increases the insert effort® nor the storage complexity!°. Since during
search a child node c is only expanded after it has been stated that its parent node p cannot
be pruned, the distance d), ; has already been computed at the time of the decision on c.
Using the precomputed parent-child distance d.. , stored in c, a quick calculation of a bound
for the distance d. 4 is possible without actually computing it:

dc,q > Ln ParentDist = |dp,q - dc,p|-

3.1.2 AESA Principle

Aronovich and Spiegler [ASO7] proposed something as part of the CM-Tree, which can be
generalized as node-local AESA [Vi86] principle.!! Inside each node all bilateral distances
between child nodes are stored. If some child node ¢; of a parent node is examined (involving
the distance computation d, ), the distance to other child nodes ¢ can be bound using this
distance and the precomputed distances d,,, ¢, . The lower bound of the distance to ¢ is the
maximum of all bounds based on already computed distances to c;:

dey,g 2 LnaESA 1= max (dCi,q - dc.wk) .
l

Contrary to the basic optimization of [CPZ97] (Section 3.1.1), insert effort and storage
complexity (in terms of node capacity) are increased. Further, this tree is not fully compatible
to the classic M-Tree, i.e., it needs different insert, delete, and query algorithms.

3.1.3 Domain-specific Heuristics

Bartolini et al. [BCP02] proposed the use of a specific M-Tree structure for indexing
Levenshtein edit distances. They developed specific “bag” heuristics to compute a cheaper
bound on the edit distance sorting letters into bags.

Their idea can be generalized to allow the M-Tree to make use of domain-specific distance
bounds in case such bounds exist. However, as this example shows, the idea must be used
with care. The Levenshtein edit distance can be calculated in O(M - N) in terms of the
lengths M and N of the two texts. The bag heuristics reduce this time to O(N + M). The

9 To decide on the parent node to insert a child and to adjust the parent-node radius, this distance must be computed
in any case during insert.

10 Each node stores only one distance. Thus, the storage complexity is O(1). Even in absolute terms this one number
is usually negligible as typical metric data (e.g. texts, images, genome sequences) are big. Of course in edge
cases (2D-data) this can mean an increase of 33%.

11 AESA [Vi86] is a similarity index structure that precalculates all bilateral distances. During search these distances
can be used to prune objects based on few computed distances and the triangle inequality.
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problem here is that search algorithms assume heuristics computations to be nearly for free
compared to a single distance computation. That is clearly not the case here — the effects
depend on the two string lengths. A better approach would be to use heuristics that can be
computed fast in O(1), even if its bounds are not so tight.

3.2 Generalized Use of Bounds
3.2.1 Combination of Bounds

As stated in Section 3.1 multiple domain-specific and domain-independent distance bounds
L}, exist, which have 3 main properties:

. Each L!, must not overestimate dy, 4, i.e., Vi,n : 1} < dy 4.

. The L!, have different precision Pr; := dy, — L%. The smaller Pr; is, the more
distance calculations these heuristics may avoid.

. Each 1! demands a different computation time 7;. In order to be of any use, T; must
be negligible compared to the time of an actual distance calculation.

Using these properties multiple distance bounds can be combined to a stronger one:

combined _ i
Ly = miaxJ_n

Lgombined pnever overestimates dy, , and has the same or a better precision than any L.

This optimization can be applied in a generic manner — i.e., not hard-wiring any specific
heuristics into the query algorithm. Domain-specific algorithms can be injected into the
index structure either at run time using abstract interface classes describing the properties of
a certain metric space, or at compile time using languages like C++ and generic metric-space
traits. Each search algorithm would then combine all available heuristics to avoid distance
calculations.

Care has to be taken to not replace an expensive distance calculation by a comparably
expensive heuristics. As an example consider the optimization described in Section 3.1.3. It
has a reduced time complexity of O(N + M) (distance calculation: O(N - M)). However,
compared to a single in-memory tree traversal or really cheap heuristics (e.g. parent distance
- see Section 3.1.1) it is not negligible.!? Hence, it might be inappropriate to use this
optimization for certain data distributions, because it may increase the search time. Further,
even if it is used, the algorithm should not just compute the maximum of all bounds, ignoring
their different computation times. Instead it should try to subsequently prune a node based
on single heuristics (cheap heuristics first). 13

12 For the search algorithm it is usually assumed that all tree traversal and heuristics operations are essentially for
free compared to a single distance computation. So they are used in abundance. This of course depends on the
relative cost of a distance calculation, so it might be valid for typical metric domains (texts, multimedia) but is
invalid when for example a low to medium dimensional euclidian distance is used.

13 [ZS15] propose a cost-benefit ratio to choose between heuristics in the context of multi-feature similarity search.
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3.2.2 Upper Bounds

Beside lower bounds on the distance also upper bounds can be computed efficiently and
used during search. For example, in case of the parent distance (Section 3.1.1) such upper
bound can be computed as

dng < TnParentDist *= dpg + dnp.

Based on this bound, the maximum possible distance d,] to an element e below n can be
estimated:

.
deg <d, =Ty +rp.

Such bound d,, can be used to save distance calculations as shown in Section 4.

3.2.3 Domain-specific Text-length Heuristics

In the case of the Levenshtein edit distance we propose the use of text-length heuristics for
efficiently computing both a lower and an upper bound. These heuristics are applicable in
case all edit operations (insert, delete, replace) are equally weighted.

The lower-bound heuristics rely on the observation that even if for two texts of different
length the shorter one is an exact substring of the longer one, the length difference must be
edited by either insert or delete operations (depending on which text is longer):

dn,q 2 LpLength = ||length(n) - length(Q)“'

For the upper bound we observe that in the worst case the texts are different in each character.
In that case, first all characters of the smaller length of the two texts can be replaced and the
remaining characters can be either inserted or deleted (depending on which text is longer).
Either way the unweighted edit distance can never be greater than the length of the longer
text:

dn,g < Tn Lengh = max(length(n), length(q)).

4 Optimization of the Range-search Algorithm

A range query is the most basic similarity query explicitly specifying the query hypersphere
Hg by its center g and its query radius r,. Due to this, the query can traverse the tree in
any order (breadth first, depth first, ... ) where depth first has the lowest space requirement.
Independent of the expansion order for each node n it must be decided whether and how to
process its child nodes. As a first attempt, in processHeuristics (Listing 1), the algorithm
tries to process the node based only on the heuristics. If this is not possible, the algorithm
falls back to computing the distance d,, ; and continues with processDistance (Listing 2).
In this algorithm the following optimization aspects can be applied independently.
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Algorithm 1 Basic Range Query: processHeuristics

processHeuristics (node n,L1,,T,):
1 —
n,relaxed — maX(O’ Ln - r")
// either determine, that no overlap is
// possible (do nothing, return true)
// or leave the work to
/!l rangeQuery/processDistance
// (return false)

1L
return dn,relaxed >rq

Algorithm 2 Basic Range Query: processDistance

processDistance (node n,dpgq):
if dpg—rm<rg:

/! overlap

if n is leaf:

add n to result set

else:
for each child ¢ in n:
rangeQuery (c¢)

4.1 One-child Cut

A tree of enforced equal leaf depth without balanced node splitting (like the M-Tree)
sometimes tends to build “aerial roots” — i.e., chains of nodes with only one child. The
efficiency of the search in such a tree is determined by the possibility to prune many
subnodes at once when examining a single parent node. This advantage is gone in case
a node n has just one child c. The algorithm would make some effort in examining » to
determine whether it should spend even more effort to examine the child nodes. In case of
only one child c it is better to examine c¢ directly. However, care must be taken in case the
centers of n and c differ, as this has effect on some heuristics on the grand children (like the
parent-distance heuristics). As shown in Listing 3 we replace the examination of a node n
with only one child directly by an examination of its child ¢ without ever computing the
distance to n.

4.2 Intelligent Combination of Heuristics

As discussed in Section 3.2.1 several domain-dependent and -independent heuristics can be
applicable. They are grouped by their approximate run time. For example, the parent-distance
heuristics and the text-length heuristics are considered to be fast, while the bag heuristics
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Algorithm 3 Range Query: One-child Cut

rangeQuery (node n):
if n has exactly 1 child:
set ¢ = the child of n

rangeQuery (c)

else:

are considered slow. This grouping and the decision which heuristics to apply must be done
by the user when initializing the M-Tree.

When examining a node, first the maximum of all fast lower-bound heuristics and the
minimum of all fast upper-bound heuristics are computed. Using these bounds, the algorithm
tries to process the node n. (For a discussion of the use of upper bounds see the subsequent
sections.) If this is not possible, it tries the processing based on the slower heuristics
(taking also into account the bounds computed using faster heuristics). Finally the algorithm
(Listing 4) falls back to actually computing the distance.

Algorithm 4 Range Query: Combination of Heuristics

rangeQuery (node n):
for each group in heuristicsGroups:

L8roup max(Lp,; in group,J_‘,g,m”p_l)
TIOUP - min(Tp; in group,T,glwup_l)

if processHeuristics (n,18 74P T8UP Y.

return

compute dpgq
processDistance (n,dnq)

4.3 Zero Interval

The easiest optimization (Listing 5) can be applied in case L, = T,. If the upper and lower
bound happen to be the same, we immediately know the actual distance: d,, 4 = Tn(= Ln).
This can be used to process the node as if the actual distance had been computed (i.e. in the
best possible manner) without actually computing it.

4.4 Upper-bound Enclosure

Using the upper distance bound, we sometimes come across a situation, where

.
dy =Tu+r <1g.
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Algorithm 5 Range Query: Zero Interval

rangeQuery (node n):
1, =
Ty =

if L, == T,:

dng = Ln
processDistance (n,dyq4)
return

if processHeuristics(n,L,,Ty):
return

compute dpg
processDistance (n,dpq)

This means that even the furthest possible element below # is inside the query hypersphere.
As shown in Listing 6, we therefore add the whole subtree below 7 to the result set without
any further distance calculation to a predecessor (or other node examinations).

Algorithm 6 Range Query: Upper-bound Enclosure

processHeuristics (node n,L1,,T,):
T _
dy, =Tn+rm

if d) <rq:

add all data elements below n
to result set

return true

else:

4.5 Upper-bound Intersection

The basic range-query algorithm tests for each examined node whether the node and the
query hypersphere intersect. If so, the node is expanded, i.e., all direct child nodes are
examined.

The basic algorithm uses lower bounds to test whether an intersection of node and query
hypersphere is impossible. If the node cannot be pruned based on this information, the actual
distance is computed. However, sometimes it is possible to preclude an intersection only
using the upper bound without computing the actual distance. Node and query hypersphere
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definitely intersect, if
Tnttn>1r92 Ty —1n.
This explicitly excludes the possibility of r, > T, + ry,, which is better handled using the

optimization in Section 4.4. In this case, the node n can be expanded (i.e. its child nodes are
examined) without computing the distance to n. Listing 7 shows the principle.

Algorithm 7 Range Query: Upper-bound Intersection

processHeuristics (node n,L1,,T,):
// ... first test Upper Bound Enclosure

//now Upper Bound Intersection:

if Th+m>rg2Tpn—rn:

for each child ¢ in n:
rangeQuery (c)

return true

else:

This optimization should only be applied with care as it has some negative side effects.
The parent-distance heuristics require the distance dj, 4 to the parent node 7 to be known
when the child node c is examined. If this optimization is used, d,, 4 is not known any more.
Instead we only know a lower (L,) and upper (T,,) bound for the distance to the parent node
when examining the child nodes. 1, and T,, can still be used to bound d. 4, but the child
bounds will be more loose, allowing less often to prune without computing distances. So in
the worst case the optimization saves one distance computation (d,, ) but triggers N other
distance computations d,, 4 to all N child nodes. This negative effect can be reduced in case
there are other heuristics which compensate for a less tight parent-distance heuristics. For
this reason, we apply this optimization only, if other fast heuristics are available.

S Optimization of the (k-)Nearest-Neighbor Search Algorithm

5.1 Overview

In the k-nearest-neighbor search the k closest elements to a query object ¢ are to be found.
There exists an equivalent range query whose range r, is the distance to the furthest of the
k results. (Assuming all distances — especially the kth and k + 1th — are not similar.) The
problem is that r, is not known in advance. However, it can be bound in the course of the
search. In case k or more nodes are already examined, r, will never be greater than the kth
furthest of all examined elements. Thus, there is always a bound Ly, Onry which shrinks
during the search process. Contrary to a range query, results that lie inside a hypersphere
Ho(g, Lr,) are only result candidates and not final search results. Given an oracle, which
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would tell the final r,, the theoretical minimum of necessary distance computations is that
of the equivalent range query, because at least the tree has to be descended using this r,.

In case of a range query, the order of node expansion and the timing of heuristics usage
do not matter. Due to the fixed query hypersphere, node examinations are independent of
each other and always deliver the same result. In case of a k-nearest-neighbor query this is
not the case any more. A distant node, which would not be expanded in case of an already
shrunken radius, may be expanded if examined early in the search (still large radius). On the
other hand, expanding many close nodes early in the search course can shrink L, faster
than first expanding distant nodes. Hence, instead of the arbitrary order of range-query
tree traversal, the k-nearest-neighbor search should examine promising nodes (with high
proximity to g) first. Inverse node proximity P is the closest possible distance that a data
element e below n can have to the query center g according to current knowledge. In its
simplest version this boils down to P = max(d,, 4 — 7, 0).

5.2 Classic Algorithm

The classic algorithm of Ciaccia et al. [CPZ97] (Listing 8) uses a priority queue to expand
nodes in order of their proximity. It makes, however, rather ineffective use of distance
bounds. Only before inserting a node n into the priority queue the bound is used to check if
n may contain elements closer than the currently known closest k results. This algorithm

Algorithm 8 Basic kNN Search

kKNN(root):
compute droot,q and Proor
add root to priority queue based on Proor

while priority queue not empty:
remove front node n from priority queue
update L, based on n

if n is leaf:
add n to result candidates

else:
for each child ¢ of n:
if dj.‘SJ_rq:

compute dcg and Pc
add ¢ to priority queue based on P,

minimizes the number of node expansions, but not the number of distance calculations. The
problem is that at the time the heuristic check is made to avoid the distance calculation d,. 4,
the query radius limit L, is still large. It is only reduced significantly when actual data
elements are added to the queue. Due to the sorting of the queue in terms of the proximity
of the nodes, at this point only not-so-promising nodes are still in the queue and the search
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is almost finished. Another problem is the permanent updating of L, ~which is only easy in
caseof k = 1.

5.3 Delayed Distance Computation

We present a better algorithm, which avoids computing L, completely and minimizes the
number of distance computations to the theoretical minimum. The main idea is to delay the
actual distance computation. For a node n, first an optimistic proximity P;- is computed
based on the lower bound L,,:

P;r = max(L, — 1y, 0).

The node is inserted into the priority queue based on P;-. When it is retrieved from the
queue, it is the most promising node currently known. At this time the distance calculation
can no longer be delayed, as we need to find out how promising the node really is. For this,
the actual distance d,, 4, and the actual proximity P, are computed. From this, there are two
possible continuations:

1. n can be reinserted into the queue based on P,, to expand it (insert its children ¢ based
on PL) when it is extracted again.

2. The other possibility is to expand it directly. In this case, the children ¢ of n would be
inserted directly into the priority queue, based on P}.

In both cases we do not need extra distance calculations in this step, as the expansion and
insertion of the children only needs some tree traversal and heuristics calculation. However,
there is a downside of case 2. If expanding the children early,

° the expansion effort could be wasted, as search might be over before n must be
expanded, and

. we permanently operate on a longer priority queue during search.!4

In both cases the algorithm stops if

° the priority queue is empty or

. k elements are found and P of the currently extracted node 7 is greater than the worst
distance of the k elements. n cannot improve the result and the remaining nodes in
the queue are known to be worse. (At this point the classic algorithm would continue
emptying the queue and only by the parent-distance heuristics removing child nodes.)

It can be shown [Gu16] that both variants lead to the theoretically possible minimum number
of distance computations. IL.e., the same distances are computed as for an equivalent range
query. Listings 9 (Case 1) and 10 (Case 2) show the principle of the two cases.

14 The effort of a single operation on such a queue is O(log N) — so all operations will be a bit more expensive.
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Algorithm 9 kNN: Delayed Distance Computation (Case 1)

KNN(root):
compute droot,q and Proor
add root to priority queue based on Proor

while priority queue not empty:
remove front node n from priority queue

if n was stored based on Pj:
compute dpg and Py
reinsert n based on P,

else if n is leaf:
add n to result elements using dygq
if £k result candidates are known:
return result candidates //we are finished

else: // inner node

for each child ¢ of n:
estimate Lo and P} (using dng)
insert ¢ based on P}

5.4 Slim Radii

In [Gul6] we present another M-Tree optimization, where nodes can be shrunken to not
just the enclosure of their child nodes, but to only all the data elements below. In this case it
is possible that a child node n seems to have a closer proximity than its parent node p.

P, > P, = max(d, 4 — 14,0).

Since P,, measures the closest possible distance an element below n can have to ¢, and all
elements below 7 are also below p, none of them can be closer than P,,. So the maximum
of all ancestor P’s should be used as P,,.

5.5 Reuse of Range-query Optimization

Most of the optimizations found for range queries (see Section 4) can and should be applied
to k nearest neighbors as well. For example, multiple heuristics should be combined, taking
into account the computation time of the heuristics. If a node has only one child, instead of
the node its child can be put on the queue directly. Also, if upper and lower bound happen
to be the same, the distance can be concluded without computing it (zero interval).
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Algorithm 10 kNN: Delayed Distance Computation (Case 2)

KNN(root):
add root to priority queue

set 7g =00
while priority queue not empty:
remove front node n from priority queue

if Pr>7y:

// no improvement possible as all
// elements of queue are worse
return current candidates as result

compute dpg and Py

if Pp<iy:

if n is leaf:
add n to result candidates
update 7; based on dugq

else:

for each child ¢ of n:
estimate L. and PF (using dngq)
insert ¢ based on P}

6 Experimental Results

6.1 Experimental Design

For evaluating the presented optimizations of the query algorithms, we filled a set of 100
trees (in main memory) with 10’000 elements of representative random data in different
domains and queried each tree with 40’000 random queries. As domains we used:

. arange of Euclidean vector spaces (from 2-dimensional up to 15-dimensional). Those
data are drawn randomly from a clustered distribution. There are 10 random cluster
centers. Data within a cluster follow a gaussian normal distribution.

° the Levenshtein edit distance on sample texts. Those are drawn randomly out of a
pool of 270’000 lines of programming source code.

° a similarity function on wafer-deformation patterns in the semiconductor industry. The
data are taken from the lithographic step in processing wafers, where deformations
have to be corrected during exposure of the wafer. As distance we use the integral of
the absolute distance function over the wafer surface. The distance at one point on the
wafer surface is the euclidian distance of the two deformation vectors!.

15 At each point the wafer has a deviation in x- and y-direction from its nominal position.
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Over all trees and queries we counted the number of necessary distance calculations and
computed an average per search. Since the resulting query effort varies considerably among
the domains (due to the curse of dimensionality), we normalized the resulting effort in
relation to the effort of a standard strategy, so that the result visualization becomes more
readable.

6.2 Range Search

For range queries we compared 3 algorithms:

1. The naive algorithm without use of distance bounds (“None”),

2. The algorithm presented in [CPZ97] (“classic M-Tree”) which uses distance heuristics
based on the precomputed distance to the parent node (see Section 3.1.1) and

3. The combination of all new optimizations (see Section 4, “EM-Tree”).

As shown in Figure 2, over all domains the parent-distance heuristics were able to save a
slight amount of distance calculations. The combination of the new optimizations presented
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Fig. 2: Experimental Results: Range query

in this paper was able to further reduce the number of distance calculations per search
by approximately 40% over all domains. The new algorithm is able to reduce the average
range-query search effort considerably.

6.3 (k-) Nearest-Neighbor Search

For k-nearest-neighbor queries again 3 strategies were compared:



Optimizing Similarity Search in the M-Tree 501

1. The naive algorithm without the use of distance bounds (“None”),

2. The algorithm presented in [CPZ97] (“classic M-Tree”’) which uses distance heuristics
based on the precomputed distance to the parent node (see Section 3.1.1) and

3. The combination of all new optimizations (see Section 4, “EM-Tree”).

As shown in Figure 3, over all domains the classic algorithm presented in [CPZ97] is only
able to reduce the number of distance calculations a bit, because the heuristics are used in a
quite inefficient manner. Using the new algorithm presented in Section 5 the number of
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Fig. 3: Experimental Results: KNN query

necessary distance calculations can be further reduced significantly.

7 Summary

In this paper we present new algorithms for a more efficient similarity search on the classic
M-Tree [Ze06]. We identified optimization concepts to reduce the number of distance
calculations which are the major part of search time (in most metric spaces even outweighing
disk-access time). We then applied this approach to develop more efficient algorithms for
range and k-nearest-neighbor search. The optimizations are presented in a modular fashion,
so that they can be applied independently. In an experimental evaluation with a broad range
of metric spaces we were able to show that these optimizations can significantly reduce the
number of distance calculations in both query types.

We only implemented the tree in a prototypical manner in main memory. (This is sufficient
due to the simple counting for our main goal of minimizing the number of distance
calculations.) Future work would be to implement the tree in an efficient manner for use on
paginated disks to really compare timings and disk accesses. Also more domains and index



502 Steffen Guhlemann, Uwe Petersohn, Klaus Meyer-Wegener

structures should be included in the comparison as in [Lall]. Search effort depends on
both the algorithms (optimized in this paper) and the tree structure. Contrary to the B-Tree,
the M-Tree has degrees of freedom in its structure. We intend to explore the possibility of
an optimized use of these degrees of freedom in a manner that the tree can be searched
more efficiently. Further, some parameters of the search strongly depend on the domain in
their availability, effort and efficiency (e.g. the order and use of different heuristics or the
efficiency of single optimizations of the range query). Future work should try to explore the
possibility to automatically optimize the algorithmic search (and also tree edit) parameters
in accordance with the presented metric space.
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