
B. Mitschang et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2017),

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 465

Efficient Z-Ordered Traversal of Hypercube Indexes

Tilmann Zäschke1, Moira C. Norrie2

Abstract: Space Ąlling curves provide several advantages for indexing spatial data. We look at the
Z-curve ordering and discuss three algorithms for navigating and querying k-dimensional Z-curves.
In k-dimensional space, a single hyper-ŠZŠ-shape in a recursive Z-curve forms a hypercube with

2k quadrants. The Ąrst algorithm concerns eicient checking whether a given quadrant of a local
hyper-ŠZŠ intersects with a global query hyper-box. The other two algorithms allow eicient Z-ordered
traversal through the intersection space, either based on a predecessor from inside the intersection
(second algorithm) or from any predecessor (third algorithm). The algorithms require an initialisation
phase of Θ(k) for encoding the intersection envelope of the local hyper-ŠZŠ with a range query. Using
this envelope, all three algorithms then execute in Θ(1). The algorithms are however limited by the
register width of the CPU at hand, for example to k < 64 on a 64 bit CPU.

Keywords: Multi-dimensional index, spatial index, PH-tree, binary hypercube, Z-curve, Z-ordering,

window queries

1 Introduction

We discuss the problem of eiciently traversing partitions of binary hypercubes. This problem

occurs for example in certain multi-dimensional indexing structures when executing window

queries. Part of the problem is to eiciently determine for increasing dimensionality k

whether points or regions in the trees intersect with a k-dimensional query hyper-box. In

the case of indexing structures such as the UB-tree [Ba97, Ma99], the BUB-tree [Fe02], the

theoretical HQ-tree [Sk06], or the more recent BQ-tree [ZYG11] or PH-tree [ZZN14], the

multidimensional data is often (partially) interleaved to form bitstrings. Depending on the

encoding, these bitstrings impose a natural Z-order on the stored keys, hence they are called

Z-addresses. When a Z-address is sliced into sub-strings of k bits, each slice can be seen as

the address (called H-address) of a quadrants of a k-dimensional binary hypercube. If we

deĄne that every quadrant can contain at most one child (sub-node or point) then nodes may

often have up to 2k children3 and every child has its own H-address.

Window queries are usually implemented as a type of node traversal while avoiding nodes

and their children if they cannot potentially intersect with the query box. To perform

eicient window queries, it is therefore necessary to traverse all necessary nodes and

sub-nodes while eiciently avoiding any unrelated nodes. Just as the tree is represented by a

hierarchy of nodes, i.e. binary hypercubes, each query box can be seen as the envelope of

all potentially matching values and thus can also be seen as a (convex) hierarchy of binary

1 ETH Zurich, Department of Computer Science, Universitätsstrasse 6, 8092 Zurich, zaeschke@inf.ethz.ch
2 ETH Zurich, Department of Computer Science, Universitätsstrasse 6, 8092 Zurich, norrie@inf.ethz.ch

3 The advantage of such large nodes may not be intuitive but has been explained and demonstrated in [ZZN14,

Zä15, Ch15, BCA15, LH14].

zaeschke@inf.ethz.ch
norrie@inf.ethz.ch

466 Tilmann Zäschke, Moira C. Norrie

hypercubes. Window queries therefore represent the problem of intersecting hierarchies of

binary hypercubes and then traversing these intersections. Related to the window queries are

some algorithms for skyline [BKS01] queries, i.e. queries for non-dominated vectors. Some

of the more recent algorithms [Ch15, BCA15, LH14] partition the space hierarchically

around pivot points and then use H-addresses to reduce the search space.

In this paper, we discuss three algorithms for eiciently navigating intersections of k-

dimensional binary hypercubes. All three algorithms can be used for traversing intersections,

but they exhibit diferent strength depending on the representation of the hypercube in

memory and on the size of the intersection compared to the size of the hypercube. The 1st

algorithm has been used before but without explanation [ZZN14] or only partial explanation

in [Ch15, BCA15]. The 2nd and 3rd algorithm are contributions of this paper.

The Ąrst algorithm isInI(h, I) checks whether a H-address h lies in the intersection I of a

node N with a query hyper-box. This is useful when we traverse the whole hypercube Hk ,

for example if |I | is approaching |Hk | = 2k .

The second algorithm inc(hI,a) takes a H-address hI,a ∈ I and returns its successor

hI,b ≻ hI,a in I. This allows eicient traversal of I if |I | ≪ 2k by omitting any h < I.

The third algorithm succ(h) takes any H-address h and returns the next smallest hI ≻ h that

lies in I. succ(h) is a generalisation of inc() that accepts any h ∈ Hk which can be useful for

large hypercubes where it can make sense to switch between the Ąrst and second algorithm.

All algorithms require encoded intersection information which can be calculated in Θ(k) for

each binary hypercube of the tree. Using this intersection information, all three algorithms

complete in Θ(1) on a CPU with at least (k + 1) bits per register, for example for k < 64 on

a 64 bit CPU. This diferentiates us from earlier work which usually processes only one bit

at a time, for example [KPS91].

Algorithms similar to isInI(h, I) have already been presented in research [ZZN14, Ch15,

BCA15, LH14] where they are used to skip quadrants of the binary hypercube. However,

while using isInI(h, I) is eicient if only few quadrants have to be skipped, the algorithm

does not scale well with larger dimensionality k where only a minority of exponentially

growing number of quadrants should be visited. For these cases we present the novel

algorithms inc(hI,a) and succ(h) which allow jumping directly to the next valid quadrant.

This paper is structured as follows. After presenting related work in Sect. 2 we deĄne

terminology in Sect. 3. Sect. 4 describes how I is calculated, followed by the sections 5, 6

and 7 which describe the three algorithms. After that, in Sect. 8, we provide a discussion

how and when the algorithms could be used, followed by a concluding discussion in Sect. 9.

2 Related Work

Window queries on Z-curves [OM84] are relevant for eicient implementations of multi-

dimensional indexes such as the Universal B-tree (UB-tree) [Ba97, Ma99, Ra00], the

Eicient Z-Ordered Traversal of Hypercube Indexes 467

BUB-tree [Fe02] or the PH-tree [ZZN14, Zä15]4, see for instance [Sa06] for other examples.

As proposed by [TH81], these trees interleave some or all bits of each dimension of a stored

k-dimensional point p = p0, p1, ...pk−1 into one bit string. We call this bitstring Z-address

z since it can be seen as a coordinate in a space-Ąlling Z-curve, i.e. the lexicographic

ordering of values encoded in Z-addresses is the Z-ordering, see [Sa94] for a discussion. A

comparison of Z-curves with other space Ąlling curves is given in [MAK03].

In the following we assume for simplicity that all attributes pi of an entry p have the same

number of bits w, however the algorithms can be adapted to values with diferent lengths

with few changes. For a k-dimensional tree with Z-ordering we can split the Z-address into

w chunks of k bits called H-addresses h which represent addresses in binary hypercubes. In

efect, an H-address hv is a cross-section through all p0≤i<k of a point p, taking the vth bit

from each pi .For example, a 2-dimensional point p = p0, p1 with p0 = 100 and p1 = 010

can be interleaved to a Z-address z = 100100. z is then sliced into w = 3 chunks of k = 2

bits each where the three chunks represent the H-addresses in the binary hypercube of the

root node hd=0 = 10, an inner node hd=1 = 01 and a leaf node hd=2 = 00.

In each binary hypercube, we deĄne H-addresses h ∈ Hk
= {0, 1, ..., 2k − 1} as the

lexicographically ordered sequence of points which, when each connected with their

predecessor and successor, form a k-dimensional binary Z-curve. For example, lets assume

a tree consisting of a hierarchy of nodes where each node represents a hypercube. In every

of the treeŠs hypercubes/nodes, if a quadrant of a hypercube contains geometrically more

than one of the points in the tree, then the quadrant simply references a sub-hypercube/node

of the same size as the quadrant. These sub-hypercubes split the space recursively further

until every quadrant contains at most one point.

For window queries, the query hyper-box (the term box denotes that it is not necessarily a

cube) is intersected with the hypercubes of the nodes, where the quadrants of the nodes are

identiĄed by H-addresses. The idea is that when we search for entries that match the query,

we want to traverse only those H-addresses/quadrants in a node that intersect with the query

hyperbox and who can potentially contain matching sub-nodes or points.

The naive approach is to iterate through all non-empty quadrants in a node and test whether

they intersect with the query. How the H-address of a quadrant can be checked for intersection

in constant time is described in [ZZN14]. This works well if the intersection I occupies a

large part of the nodeŠs hypercube. For k = 2 it cannot be smaller than
|I |

Hk
≥ 1

2k
=

1
4
, but

for growing k and small selectivity the naive approach becomes exponentially ineicient.

An improved version with min/max quadrants (see Sect. 4) is described in [Ni13]. However,

they still appear to check all quadrants between min and max in order to skip them.

In this paper we propose an approach that, instead of iterating through all available

quadrants, generates only H-addresses that intersect with the query and then checks whether

the H-address exists in the hypercube of the current node. The algorithm requires Θ(k)

initialisation efort for each visited node and then generates only H-addresses that are part

of the intersection in Θ(1) for each H-address on a CPU with more than k bits per register.

4 [ZZN14] uses the term Śrange queriesŠ for queries on rectangular windows.

468 Tilmann Zäschke, Moira C. Norrie

More recently, binary hypercube partitioning is also used by skyline algorithms [BKS01],

i.e. algorithms that determine all non-dominated vectors in a dataset. Unlike the index trees

above, they usually do not split the space in half according to the binary representation of the

coordinates, but instead split at specially calculated ŚpivotŠ points [Ch15, BCA15, LH14].

However they still use H-addresses and partially describe algorithms similar to our initial

isInI(h, I) algorithm. Their description and use of isInI(h, I) is partial in the sense that they

only consider cutting away the ŠupperŠ half of the cube in each dimension. As discussed in

Sect. 6, cutting away the lower half works mostly, but not completely, symmetric.

3 Terminology

In this work we refer to constant time operation as anything that can be executed on a

computerŠs CPU in a constant amount of CPU operations. For example, all Θ() and O()

references refer to execution complexity on a CPU with at least (k + 1) bits per register,

unless stated otherwise.

Definition 1. (Point p) A point p represents an entry in a tree structure. p is a k-dimensional

point where each dimension is represented by a value p0≤i<k with w bits, i.e. each value

pi is an integer with 0 ≤ pi < 2w . For simplicity we ignore negative integers and floating

point values, even though they are also supported by the algorithms, possibly with minor

modifications5. We also assume that all values pi have the same number of bits w.

Definition 2. (Z-address z) A Z-address z is a bitstring consisting of the k × w bits of a

point p. The first k bit of z represent the first (highest order) bit of each value pi , the next k

represent the second bit, and so forth.

Definition 3. (H-address h) Let h ∈ Hk
= {0, 1, ..., 2k − 1}. A hypercube address h is any

subsequence of k bits starting at a multiple of k of a bitstring z. Any z thus can be seen as a

sequence of w H-addresses which designate a point p in the hierarchical hypercube of the

index tree. Inside the node of a tree, each h acts as a key to a point that is stored in the node

or to a subnode.

Definition 4. (Sets I, N and R) N ⊆ Hk denotes the set of all h that are stored in a node,

either in the form of points or subnodes. I ⊆ Hk is the set of h that potentially contains

points or subnodes that intersect with the query box. h ∈ I do not necessarily exist, i.e. I

may or may not be a subset of N . Finally, R ⊆ Hk is the result set containing all h that lie

in I and in N , i.e. R = I ∩ N .

We denote the bitwise binary operations as follows: Ś&Š (AND), Ś|Š (OR), Ś∼Š (NOT) and

Ś⊕Š (XOR). The listings use the same notation except ˆ for ⊕.

4 Encoding the Shape of I

In order to eiciently traverse an intersection I, we use an eicient encoding of the shape of

I. We do this by means of two bit sequences, m0 and m1. m0 and m1 each consist of k bits

5 See [ZZN14] for a related discussion.

Eicient Z-Ordered Traversal of Hypercube Indexes 469

where each bit in m0 speciĄes whether the Ś0Š-half of that dimension of the hypercube is

part of I or not. Accordingly, m1 speciĄes the Ś1Š-half of the dimension.

Definition 5. (Range filters m0, m1). We encode the intersection I of the hypercube, with the

query box in two bit strings, m0 and m1. For each dimension i : 0 ≤ i < k, m0 has a ‘0’ at

position i iff the ‘0’ quadrant of that dimension is part of the intersecting body. Accordingly,

m1 has a ‘1‘ at position i iff the ‘1‘ quadrant of dimension i is part of the intersection.

Definition 6. (m0,i & ∼m1,i ≡ 0). We define that m0 and m1 never restrict on the same

dimension. In other word, m0 and ∼m1 never have a ‘1’ bit at the same position. If they

would restrict on the same dimension, neither ‘0’ nor ‘1’ would be allowed for h ∈ I at that

position and the intersection I = ∅ would be empty. In this case, the current node should

have never been entered because it can not possibly contain any results.

Corollary 1. (m0 ≤ m1). m0 ≤ m1 follows implicitly from Def. 5 and Def. 6 because each

bit in m0 is necessarily smaller or equal to the according bit in m1. If m0 is bitwise smaller

or equal to m1, then m0 ≤ m1.

Corollary 2. (m0, m1 ∈ I and ∀h : (h ∈ I → m0 ≤ h ≤ m1)). m0 and m1 are valid

H-addresses with m0,m1 ∈ I. If we were to construct a minimum value hmin ∈ I, we would

set all bits to ‘0’, except those bits that are required to be ‘1’. This is identical to how we

construct m0, therefore m0 = hmin and hence m0 ∈ I. The argument for m1 goes analogous.

While m0 and m1 define the minimum and maximum values for h through lexicographic

ordering, not all values h ∈ [m0,m1] are in I, i.e. h ∈ I → h ∈ [m0,m1] is a one way

implication. ∀h : (h ∈ I → h ∈ [m0,m1]) but ¬∀h : (h ∈ [m0,m1] → h ∈ I). As a result,

|I | ≤ |[m0,m1]|.

It is important to understand that m0 and m1 play a double role by encoding the extent of the

intersection I while also being the minimum and maximum possible values for any h ∈ I.

Figure 1 shows an example with a 3-dimensional (hyper)-cube split in two parts, the front

with y = 1 and the back with y = 0. If we assume an I that consists only of the half of the

cube that has y = 1 while x, z = 0, 1 are unconstrained then we would get m0 = 010 for

constraining yŠs lower dimension and m1 = 111 because there are no other constraints. As

we can see, m0 and m1 represent the numerical minimum and maximum of the intersection I

which consists of the front of the cube.

000 100

001 101

xy

z

010 110

011 111
(x,y,z)

=m0

=m1

Fig. 1: Hypercube with k = 3 where I (grey area) is constrained to y = Ś1′

Corollary 3 (Size of N : |N |). The size of N can be calculated from m0 and m1. Let n1,m0

be the number of ‘1’ bits in m0 and n0,m1 be the number of ‘0’ bits in m1. Then the number

of dimensions with restriction kr = n1,m0 + n0,m1. Since N extends only in the non-restricted

dimensions, N becomes Hk−kr and the size of N becomes |N | = 2k−kr .

470 Tilmann Zäschke, Moira C. Norrie

Since counting Ś1Š bits is a constant time operation on typical modern CPUs, the size |N |

can be eiciently computed with (Example in Java):

//mask to avoid bits with i>=k

long mask = ~(-␣<<k);

//count ‘␣'-bits

int k_r = Long.bitCount(m0 | ((~m␣) & mask));

//power of 2^(k-k_r)

int sizeN = ␣ << (k - k_r);

If we look at the Z-ordered traversal in I, we see that the gaps between h values in I

are irregular, see for example the gap between Ś011Š and Ś110Š in Fig. 1. A dimensional

restriction on a highly signiĄcant bit will cause a big gap while a less signiĄcant bit will

cause a small gap.

Corollary 4 (Gap size). We assume an N with a single restriction on one dimension i with

0 ≤ i < k. If we want to traverse the gap then we need to move on by 2i entries before

we find the next valid entry. The size of the gap, i.e. the number of invalid entries, is 2i .

If multiple gaps are crossed at the same time, the total width of the gap is the sum of the

individual gaps. The largest possible gap occurs if all restrictions are crossed at the same

time. In this case, without further proof, the size of the gap is simply the number resulting

from (m0 | ∼m1) + 1.

5 Algorithm 1: isInI(h,I)

The isInI() algorithm checks whether an H-address h intersects with I. To specify the shape

of I, we use m0 and m1 because they carry all relevant information and uniquely specify I.

The function has therefore the parameters isInI(h,m0,m1). We deĄne:

Definition 7. (Bitstring bX and bits bX,i) We define b as the bitstring of a given integer

number. We use bh, bm0, bm1 to indicate that we discuss the bit representation of h, m0 and

m1 respectively. bh,i, bm0,i, bm1,i is the ith bit of b, starting with i = 0 for the least significant

bit. 0 ≤ i < k irrespective of the number of leading ‘0’ bits. b{h,m0,m1},i is undefined for

i < 0 and assumed to be ‘0’ for i ≥ k.

While I is continuous in space, see grey area in Fig. 1, it is not contiguous in terms of the

numeric sequence of its h-addresses. Therefore, it is not suicient to check if m0 ≤ h ≤ m1.

For example, as shown in the Ągure, the grey intersection with the query box consists of the

non-contiguous sequence {010, 011, 110, 111} = {2, 3, 6, 7}.

A naive algorithm could check for each bit bh,i (with 0 ≤ i < k) in h whether it is compatible

with the according bits bm0,i in m0 and bm1,i in m1. If bm0,i = 1 and bh,i = 0 or bm1,i = 0

and bh,i = 1, then h < I otherwise h ∈ I. This approach would require 2 ∗ k bit comparisons.

A constant time version is presented in [ZZN14], however with little explanation how or

why this works. The algorithm in [ZZN14] is as follows:

Eicient Z-Ordered Traversal of Hypercube Indexes 471

boolean isInI(long h, long m0 , long m␣) {

if ((h | m0) != h) {

return false;

}

if ((h & m␣) != h) {

return false;

}

return true;

}

List. 1: isInI(), original version from [ZZN14]

Lemma 1. isInI(h,m0,m1) = true iff h ∈ I.

Proof. We limit the proof to one individual bit bi because ⊕ (XOR), & (AND), | (OR) and ∼

(NOT) are bitwise operations that process one bit from each operand without interfering with

other bits. Therefore, if the proof works for a single bit, it implicitly works for any number

of bits. The Ąrst check in Lst. 1 (Śif (((h | m0) & m␣) != h)Š) can only return false

if hi | m0,i , hi . This can only happen if (hi = 0) ∧ (m0,i = 1), which indicates, see Def. 5,

that h refers to the Ś0Š half of the hypercube while only the Ś1Š half is part of I. Accordingly,

for the second term h & m␣ != h, this can only return false if (hi = 1) ∧ (m1,i = 0),

which indicates, again see Def. 5, that h refers to the Ś1Š half of the hypercube while only

the Ś0Š-half is part of I. As a result, inc() returns false if h < I.

Our optimisation is almost trivial, it uses the fact that m0,i and m1,i can never restrict on

the same dimension because m0&(∼m1) ≡ 0, see Def. 6. Using this fact, the code can be

simpliĄed to

boolean isInI(long h, long m0 , long m␣) {

return ((h | m0) & m␣) == h;

}

List. 2: isInI(), final version

In other words, if m0 requires any bit to be Ś1Š which is not set in z, or if m1 requires any bit

to be Ś0Š which is Ś1Š in h, then the comparison with the original h will fail and the function

reports a mismatch.

Lemma 2. h|m0&m1 = h ⇔ h ∈ I

Proof. Building on Lemma 1, Lst. 2 can only behave diferent from Lst. 1 if m0 and m1

would afect the same bit and m0 would be the inverse of m1, i.e. if (h | m0) != h but

((h | m0) & m␣) == h. However, m0 and m1 can never afect the same bit, see Def. 6,

hence both algorithms show identical behaviour.

From the code it is obvious that it executes in constant time as long as all values do not have

more bits than a CPU register.

472 Tilmann Zäschke, Moira C. Norrie

6 Algorithm 2: inc(h)

In cases where I is much smaller, see Corollary 3, than the surrounding binary hypercube,

i.e. |I | ≪ 2k , checking each entry with isInI(h,I) is not very eicient. Instead, it is desirable

to have a way of directly generating h-addresses that are part of the intersection. One

approach is an algorithm that takes one hin ∈ I as input and generates the next bigger

hout ∈ I, thus allowing to generate a complete set of all h ∈ I. To this end we propose the

inc(hin,m0,m1) algorithm that produces all h ∈ I. The starting value for hin would be m0,

i.e. inc(hin = m0,m0,m1).

The problem is that I is not a necessarily contiguous sequence of H-addresses but can have

numerous gaps of diferent length. For example, the I in Fig. 1 is {010, 011, 110, 111} =

{2, 3, 6, 7} which has a gap of two in the middle but no gap between the other elements.

That means, depending on the current hin, inc() has to add a diferent δhin,out to get hout .

We can see that δhin,out is related to m0 and m1. If the ith bit (counting i from the lowest

bit) of m0 is 1 (m0,i = 1) and the ith bit of hin is Ś0Š after adding Ś1Š, then we must add an

additional 2i in order to switch the bit back to an acceptable value. The algorithm for m1 is

similar. Such an algorithm that has to verify each bit obviously executes in O(2 ∗ k) since h,

m0 and m1 have each k bits. Based on the example in Fig. 1, the transition from h = 011 to

h = 110 would look like this:

--> start: h=0␣␣

h <- hȷ␣ = ␣00

--> conflicts with m␣, bit i=␣

h <- hȷ(2^␣) = ␣␣0

--> okay

An obvious approach to achieve better runtime than O(k) is to Ąnd a way to calculate

δhin,out . While we are not aware of a way to do this, we achieve the desired result by

exploiting the CPUŠs add operation. The problem is that, if we add Ś1Š to a bit, a possibly

resulting overĆow should not necessarily go to the immediate next higher bit, but to the

next higher bit that is unrestricted and that can therefore be Ćipped. The trick is to let the

CPUŠs add operation skip over the bits that are restricted by m0 and m1. To do this, we set

all bits that should be skipped to 1. Any overĆow will then be forwarded to the next Ś0Š

bit in constant time. Since the input h is already a valid H-address (per deĄnition) the bits

restricted in m0 are already set to Ś1Š and we only need to set the restricted bits from m1 to

Ś1Š, because they will all be Ś0Ś due to the restriction. This can easily be done with

h = h | (~m␣); //set filtered bits to ‘␣'

If we now increment h by one, all bits on which we have restricted create an overĆow, unless

the overĆow is swallowed by a lower order bit that was Ś0Š.

Now we just have to make sure that we turn h back into a valid value by setting and unsetting

the restricted bits. This can be done by

Eicient Z-Ordered Traversal of Hypercube Indexes 473

h = (h & m␣) | m0; //restore filtered bits

The resulting function is:

long inc(long h_in , long m0 , long m␣) {

long h_out = h_in | (~m␣); //pre -mask

h_out ȷȷ; // increment

h_out = (h_out & m␣) | m0; //post -mask

return h_out;

}

List. 3: inc(), improved version

This function produces an ordered sequence of h ∈ I withΘ(1) per h. Note that this function

returns hout ≤ h if the incoming hin = m1. The reason is that in a practical implementation,

m1 should have all bits bi for i ≥ k set to Ś0Š, which means that hout ≤ h.

Corollary 5 (Stop condition). If the input is hin = m1 then hout = m0, unless the CPU

performs signed computation and the overflowing bit causes a sign change to a negative

value. Also, in the special case of m0 = m1 → hout = hin because h = m1 → hout = m0 =

m1 = hin.

We split up the proof of inc() in three parts. First we show that inc() wraps around from m1

to m0, i.e. that inc(m1, I) = m0.

Lemma 3. inc(hin = m1, m0, m1) = m0. This wrap around condition means that the highest

possible values hin = hmax ∈ I, which is m1, results in the lowest possible value, m0. This

condition ensures that hout =inc() always produces hout ∈ I, however, as we will see, at

the cost of breaking the hin > hout rule (Lemma 5).

Proof. In the Ąrst operation all bits are set to Ś1Š: hout = m1 | ∼m1 = {1}k → hout = 2k − 1.

In the second step we add 1, resulting in hout = 2k , which is all Ś0Š with a leading Ś1Š at

position i = k + 1. In the third step, the &m1 operation sets the leading bits to Ś0Š, resulting

in hout = 0, and the hout = hout | m0 results in hout = m0.

Now we show that inc() always returns an h ∈ I.

Lemma 4. ∀hout : hout = inc(hin,m0,m1) → hout ∈ I

Proof. For any H-address hout = inc(hin, m0, m1) → hout ∈ I for all valid m0, m1 and

hin ∈ I because the masking h&m1 | m0 (post-masking) ensures that only the valid bits

remain set, i.e. that hout ∈ I. In other words, let C(h) = h&m1 | m0 be the function

used in the the post-masking step in inc() and in isInI(), see Lemma 1. C is idempotent

since Ś&Š and Ś|Š are idempotent bitwise operations. Since inc() applies C(h) as the last

step, a subsequent check with isInI() results in C(C(h)). However, C(C(h)) ≡ C(h), hence

¬∃h : C(C(h)) , C(h) which means that ∀hout : hout =inc()→ hout ∈ I.

474 Tilmann Zäschke, Moira C. Norrie

Finally we show that inc() always returns the direct successor, i.e. that there is no valid

h ∈ I that lies between any given input value and output value. This implies that hout > hin
for hin < m1.

Lemma 5. ¬∃hx : (hin < hx < hout) ∧ (hout = inc(hin,m0,m1)), or simply hin ≺ hout
where ‘≺’ indicates direct predecessor relationship in I.

Proof. First we consider the case that the least signiĄcant bit bh,0 = 0 right before the

increment (after the pre-masking). bh,0 can only be Ś0Š if m0 does not restrict on this bit, i.e.

m0,0 = 0, otherwise hin < I would not be a valid input argument. Neither can m1 restrict on

the Ąrst bit, otherwise the initial pre-masking h | ∼m1 would have set it to Ś1Š. During the

increment, we add Ś1Š, resulting in a bitstring that represents an integer that is trivially Ś1Š

larger than hin. The post-masking has no efect on bin,0 because we established that neither

m0 nor m1 can have a restriction on that bit. They also cannot change any of the other bits

of hout because these have not changed and are identical to the bits of hin which comply by

deĄnition with all restrictions imposed by m0 and m1. Since adding Ś1Š to bh,0 cannot afect

any other bits, nor is it afected by other bits, it can be generalised to adding a Ś1Š bit to any

Ś0Š bit, i.e. for any bh,i .

Next, we show that adding Ś1Š to any Ś1Š bit bh,i also works. After the pre-masking step,

a bit bh,i can be Ś1Š either because it was Ś1Š in hin or because it was set to Ś1Š during

pre-masking because m1 has a restriction on that dimension. Now, adding Ś1Š to a Ś1Š bit in

bh,i will cause an overĆow and result in bh,i = 0 and Ś1Š added to the next higher bit bh,i+1.

The overĆow may cascade through several bits until it adds Ś1Š to a Ś0Š bit in bh, j , with j > i,

which we treated already in the Ąrst part of this proof. If neither m0 nor m1 impose any

restrictions, the post-masking will not change hout and hout is trivially the +1-successor of

hin. Since the highest modiĄed bit bh, j was a Ś0Š bit, hout > hin holds as established above.

We also know from Lemma 4 that hout ∈ I.

Finally, is hout the direct successor of hin or, in other words, could there be a value hx with

hin < hx < hout? Any hx > hin must have at least one Ś1Š in a position ix where hin has a

Ś0Š, otherwise it cannot be greater than hin. This is only possible if Ś1Š and Ś0Š are actually

possible values for that position, which means that neither m0 nor m1 impose a restriction

on that position. If the position in question is ix = 0, then hout is the immediate successor as

shown in the Ąrst part of this proof. If ix > 0 then hout is also the successor of hin because,

as shown above, the algorithm will overĆow until it hits a bit that is Ś0Š. All bits before that

(i.e. all that cause an overĆow) are either Ś1Š in hin or they can have only one state, which

means hx could not be diferent from hin at that position without violating the boundary

imposed by m0 and m1. This means there cannot be an hx with hin < hx < hout .

7 Algorithm 3: succ(h,i)

The third algorithm works similar to inc(h,I), but accepts as input arbitrary h ∈ Hk and not

only h ∈ I. We start with a version of the algorithm that treats three cases separately before

we present a more compact but less intuitive version without branching.

Eicient Z-Ordered Traversal of Hypercube Indexes 475

The 3-cases implementation Ąrst checks whether h ∈ I which means that inc() can be used

from incrementation (1st case). If h < I, it Ąnds out which bits collide with m0 (2nd case)

or m1 (3rd case) and, depending on where the most signiĄcant of the colliding bit comes

from, uses two approaches to generate an output hout ∈ I. The details are given in the proof

to Lemma 6.

long succ(long h, long m0 , long m␣) {

if (isInI(h, m0 , m␣)) {

return inc(h, m0 , m␣); //␣st case

}

long coll = ((h | m0) & m␣) ^ h;

long diffBit = maxBit(coll);

long mask = diffBit > 0 ? diffBit -␣ : 0;

long confM0 = (~h) & m0;

long confM␣ = h & ~m␣;

if (confM0 > confM␣) { // 2nd case

h &= ~mask;

h |= m0;

return h;

}

// increment - 3rd case

long out = h | ~m␣; //pre -masking

out ȷ= coll & ~m␣ ; // increment

out = (out & m␣) | m0; //post -masking

return out;

}

List. 4: Implementation of succ()

Note that we use a function maxBit(x) that returns a Şvalue with at most a single one-bit, in

the position of the highest-order (“leftmost”) one-bit in the specified value ‘x’. Returns zero

if the specified value has no one-bits in its two’s complement binary representation, that is,

if it is equal to zeroŤ6. Modern CPUs typically provide a constant time instruction for this

operation.

Lemma 6. hout =succ(hin, m0, m1) → hout ≻ hin with hout ∈ I. That means succ()

always returns the next possible h ∈ I, i.e. ¬∃hx : hx ∈ I ∧ hin < hx < hout .

Proof. We determine which bits in hin conĆict with m0 or m1, i.e. in which dimensions hin
lies outside I. Let im0 and im1 be the position (the rightmost and least signiĄcant bit is at i = 0)

of the most signiĄcant bit bh,i that poses a conĆict with m0 and m1, respectively, or i = −1

6 See javadoc of Long.highestOneBit() in JDK 7 by Oracle Inc.

476 Tilmann Zäschke, Moira C. Norrie

if no conĆict exists. We now consider three scenarios. If im0 = im1 then im0 = im1 = −1,

because m0 and m1 can never conĆict on the same bit, see Def. 6. If there is no conĆict we

can simply apply inc() and Ąnish.

As second case we consider im0 > im1. In this case, bi,m0 is set to Ś0Š even though it would

need to be set to Ś1Š to intersect with I. To create the next highest valid h ∈ I we simply set

all bits bi : i ≤ im0 to their respective minimum, i.e. we set all bits bi with i ≤ im0 to the

values of the last im0 bits of the known minimum m0. The result is the smallest h ∈ I with

h > hin, i.e. h ≻ hin, see also Corollary 2.

As third and last case we consider im0 < im1 where the most signiĄcant conĆicting bit

at im1 has a Ś1Š instead of the required Ś0Š. To Ąnd the next higher h ∈ I, we Ąrst apply

the pre-masking from inc(), then we add a Ś1Š at the conĆicting position im1, i.e. we add

2im1 , then we set all bits bi with i ≤ im1 to their respective minimum deĄned by m0 and

Ąnally apply the post-masking from inc(). By means of an overĆow during the addition, the

conĆicting bit is set to Ś0Š and the addition ensures that the resulting number is larger than

hin. By setting the trailing bits to their minimum, we ensure that we do not skip any h ∈ I,

i.e. we ensure that h ≻ hin. To ensure that adding Ś1Š works Ąne for the higher order bits

bi with i > im1, we apply the pre-masking and post-masking from algorithm inc() which

ensures that the resulting value is indeed h ∈ I, see Lemma 4.

While the algorithm in Lst. 4 works Ąne, it can be optimised by avoiding the three branching

statements. Lst. 5 shows an optimised version with less instructions and without branching.

First, we calculate two values, confM0 and confM␣, that have exactly one bit set to Ś1Š,

either at the most signiĄcant position where a conĆict occurs or as the least signiĄcant

bit. We then calculate two masks, maskM0 and maskM␣, that are Ąlled with Ś0Š up to and

including the Ś1Š bit of confM0 and confM␣. After the Ś1Š bit, they are Ąlled with Ś1Š. If

no conĆict occurs, the masks are all Ś0Š. Then we start the incrementation with the known

pre-masking step. This is especially necessary to bring the most signiĄcant conĆicting bit

into a consistent state. Then, in the new masking step, we remove all bits below the most

signiĄcant conĆicting bit. After that, we add confM0 | ~maskM␣. If no conĆict occurs,

confM0 is Ś1Š and we add Ś1Š. Otherwise we add Ś1Š at the most signiĄcant conĆicting

position with m1, unless m0 has a more signiĄcant conĆicting position, in which case the

mask ~maskM0 ensures that nothing is added. Finally we do the post-masking and return the

result. It is easy to see that the algorithm completes in constant time.

long succ(long h, long m0 , long m␣) {

long confM0 = maxBit ((~h) & m0 | ␣);

long confM␣ = maxBit(h & ~m␣ | ␣);

long maskM0 = confM0 -␣;

long maskM␣ = confM␣ -␣;

// increment

long out = h | ~m␣; //pre -masking

out = out & ~(maskM0 | maskM␣); //mask

out ȷ= confM␣ & ~maskM0; // increment

Eicient Z-Ordered Traversal of Hypercube Indexes 477

out = (out & m␣) | m0; //post -masking

return out;

}

List. 5: Optimised no-branch succ()

8 Application Example

For the remainder of the paper, we use the PH-tree [ZZN14, Zä15] as a running example for

the applicability of the established algorithms. The PH-tree is a index that forms a hierarchy

of binary hypercubes. The root node is a binary hypercube and each corner is connected

with a child hypercube which recursively have hypercubes connected to their corners. The

position of the corner of the k-dimensional binary hypercube in the root node encodes the

Ąrst bit of all values pi of a point p, this efectively interleaves the bits of all pi . The Ąrst

child hypercube encodes the 2nd bit, and so forth. When storing values with a precision of

64 bit, the tree has a depth of 64 nodes. For simplicity we assume that all values pi have

the same precision and we ignore the fact that the trees may, for optimisation, create nodes

only if at least two corners have children. Since each hypercube represents one bit of each

dimension of a stored point, the tree can be at most 64 nodes deep for 64 bit values.

Geometrically, the PH-tree bipartitions the space recursively into hypercubes of decreasing

size which are represented by nodes. Division is limited such that each node contains at

least two points, either directly stored in the node or in subnodes. When traversing the tree

one node after another, the data points p are returned in Z-order according to the interleaved

value z = interleave(p0, ..., pk−1). An example of a two-dimensional tree (k = 2) with 3-bit

values (w = 3) is shown in Fig. 2. The numbers are the interleaved z values, the squares

represent the nodes. The outer square is the root node, it contains 2k = 4 child nodes, which

each contain 4 leaf nodes with 4 points each.

0

2

8

10

32

34

40

42

1

3

9

11

33

35

41

43

4

6

12

14

36

38

44

46

5

7

13

15

37

39

45

47

16

18

24

26

48

50

56

58

17

19

25

27

49

51

57

59

20

22

28

30

52

54

60

62

21

23

29

31

53

55

61

63

p0

p1

Fig. 2: z values and nodes of a tree with k = 2 and w = 3 with one root node (blue), its child

nodes (green) and 16 leaf nodes (grey). The black rectangle is the querybox intersecting with binary

hypercube nodes in z-ordered tree.

The PH-tree supports three storage representations for internally representing the sub-nodes

and points stored in a node: Array Hypercube (AHC), List Hypercube (LHC) and Nested

Tree Hypercube (NTHC).

478 Tilmann Zäschke, Moira C. Norrie

In AHC representation, the entries of a node are stored in an array of size 2k . This

representation requires memory in the order of Θ(2k), but can be eicient if the nodes

contains many entries. The array addresses are efectively the Z-addresses which allows

very fast lookup in Θ(1). The cost of full traversal is Θ(2k), insert and delete execute in

Θ(1).

In LHC representation, all entries are stored in a sorted list ordered by their Z-addresses.

This approach is often more memory eicient but requires a binary search for random access

with O(log2 |N |). A full traversal costs O(|N |).

With NTHC, entries are stored in a nested tree, see [Zä15]. NTHC is only used for very

large nodes to speed up insertion and deletion. Like LHC, the cost of random access is about

O(log |N |) and full traversal is O(|N |). For the purpose of the calculations below, NTHC

behaves approximately like LHC, except for higher base cost for all operations. Hence, we

discuss below only LHC and imply that any conclusion also apply to NTHC.

One property of the PH-tree is that all entries in a node share the same preĄx, i.e. the leading

bits of the Z-values in a node are identical. This is called the node-prefix. Figure 3 shows on

the left an example with the preĄxes for the 4 sub-nodes of a root node with k = 2. The

preĄx is essentially the coordinate in the rootŠs hypercube where the sub-node is attached.

On the right the Ągure shows the preĄxes of the leaf nodes, consisting of the preĄx of their

parent plus their own position in the parent. A preĄx always contains a multiple of k bits.

00

01

10

11

00-1000-00

00-1100-01

01-1001-00

01-1101-01

10-1010-00

10-1110-01

11-1011-00

11-1110-01

Fig. 3: PreĄxes (positions in global space) of the direct children of the root node (left) and their

respective children (right)

8.1 Window Queries

Window queries are speciĄed by a Ślower leftŠ and Śupper rightŠ corner qmin and qmax .

To locate matching points inside the query box, the PH-tree traverses the tree by locating

the node that contains the interleaved Z-value of qmin. The tree then iterates through the

stored Z-values of each node. Once it reaches the end of a node it returns to the parent

node and traverses the next child node. The algorithm stops once the current Z-value is

≥ qmax . Figure 2 shows an example with a query box with zmin = interleave(001, 001) = 3

to zmax = interleave(101, 100) = 50. The algorithms in this paper can be used to eiciently

traverse the content of a node so that only those child nodes and points are traversed that

potentially intersect with the query box.

Eicient Z-Ordered Traversal of Hypercube Indexes 479

For a window query with a query box deĄned by qmin and qmax , we intersect the query

box iteratively with the binary hypercubes of each node. Starting with the root node, we

need to identify those quadrants of the rootŠs hypercube that can intersect with the query

box. A simple approach is to iterate through all quadrants (represented by H-adresses),

calculate the boundaries of each quadrant and check whether they overlap with the query

box. Overlapping occurs if the lower boundary pmin ≤ qmax,i or the upper boundary

pmax ≥ qmin,i . To translate the boundaries of a hypercube relative into the global space, we

need apply the preĄx of the node. A naive implementation may look like this:

boolean isInI(h, qMin , qMax , prefix) {

for (0 <= i < k) {

// convert the i'th bit of h to int

int pMin = hToMinInt(prefix , h, i);

int pMax = hToMaxInt(prefix , h, i);

if (pMax < qMin[i] || pMin > qMax[i]) {

return false;

}

}

return true;

}

List. 6: naive isInI(z, qMin, qMax, pre f ix)

The hToMinInt() and hToMaxInt() in the above algorithm hide the fact that p needs to

be reconstructed before it can be compared to qMin and qMax, i.e. we need to construct a

minimum and maximum k-dimensional integer p consisting of the k-dimensional prefix

and h. The diference between the two functions is that, if we are not in the leaf level,

hToMinInt() Ąlls all remaining bits with Ś0Š while hToMinInt() Ąlls them with Ś1Š. On

the leaf level, there are no remaining bits to be Ąlled. Figure 4 shows an example where

a node [8, 11] intersects with a query so that only {9, 11} lie in I. The middle part of the

Ągure shows how the tree encodes the values, with 00 − 10 as the nodeŠs preĄx and the four

h-values 00, 01, 10 and 11. The right part shows the same h-values and the resulting m0

and m1 which encode the intersection I (grey area) and, at the same time, represent the

minimum and maximum h-values in I.

00
01

(m0)

10
11

(m1)

8 9

10 11

00-10-

00

00-10-

01

00-10-

10

00-10-

11

Fig. 4: Intersection I (grey area) of node with a query-box (left), according bit-encoding with preĄx

00 − 10 (middle) and resulting quadrants with m0 and m1 (right)

In the following sections we discuss how and when the three proposed algorithms can be

used for window queries.

480 Tilmann Zäschke, Moira C. Norrie

8.2 isInI()

The isInI() algorithm is useful when iterating through the H-addresses of an AHC hypercube

where most elements can be expected to lie inside I, i.e. |I | approaches 2k . Since m0 and

m1 can serve as minimum and maximum values for the iteration, it is suicient if a suitable

majority of the elements in [m0,m1] can be expected to be in I. The total cost Cnode

of traversing a whole node in order to identify all potential matches is CAHC,isInI =

2k × (cisInI + carray−lookup), where cisInI denotes the cost of a single call to isInI(). The

main advantage is that isInI() is very fast because it contains very few operations.

In the case of LHC, full traversal means traversing a list (clist−next per element) of |N |

elements. This results in a total cost CLHC,isInI = |N | × (cisInI + clist−next). Therefore,

with LHC, isInI() is useful if |I | approaches |N | but ineicient for |I | ≪ |N |.

8.3 inc()

In the following, {z1, z2, ...} designates a sequence of z values returned that can be constructed

from a nodeŠs preĄx and the H-addresses generated by inc(). [z1, z2] is a subnode that

potentially contains all z-values between z1, z2, assuming that these z values are present in

the tree.

Figure 2 shows a tree with a query box Q and the ordering of points in the query result.

The aim of inc() is to return only h values from a nodeŠs intersection I so that a traversal

for a window query only checks sub-nodes and points that potentially intersect with I. In

the example, on the level of the root node (blue), inc() returns all children (green nodes),

because they all intersect with Q. On the intermediate level (green nodes) it will return all

children (grey leaf nodes) for the Ąrst node, the two leaves nodes {[16, 19], [24, 27]} for

nodes for the second and {[32, 35], [36, 39]} for the third node and only the Ąrst leaf node

{[48, 51]} for the last green node. On the leaf level (grey nodes) it returns {3}, {6, 7}, {9, 11}

and {12, 13, 14, 15} from the top left quarter of the tree, and so forth for the remaining tree.

In other words, inc() returns from a node only z values that potentially intersect with the

query box Q. However, it does not guarantee that the nodes actually contain any point p ∈ Q.

For example, the algorithm will check the top left grey leaf node {[0, 3]} even if 3 is not

actually stored in the tree. Please note that while the example in Fig. 2 looks quite simple,

the size of the nodes grows with 2k , which means that simply checking all z in a given node

becomes prohibitively expensive for large k. Even checking only all actually existing h and

the according z in a node, if such a list is available, can be expensive if the node intersects

only with a small part with Q.

Using inc() in an AHC node costs CAHC,inc = |I | × (cinc + carray−lookup). When using

LHC, inc() is more expensive with CLHC,inc = |I | × (cinc + clist−lookup) where clist−lookup
is a O(log |N |) operation for performing a binary search on the sorted list of subnodes and

point in the node. Obviously, inc() tends to work well if |I | is small compared to the number

of entries in the node |N | or compared to the maximum size of the node |Hk | = 2k . The

Eicient Z-Ordered Traversal of Hypercube Indexes 481

disadvantage is that this approach always traverses |I | elements even if |I | is much bigger

than number of entries in the node, i.e. if |I | ≫ |N |.

8.4 succ()

We saw that isInI() and inc() both have strengths and weaknesses depending on the size of

N , I and Hk . We also saw in Corollary 4 that the gaps in the value space of I that occur

during traversal of a node can be quite irregular and large. One idea for improvement is

therefore to traverse areas with large gaps with inc() while using full traversal with isInI()

on the (mostly) contiguous stretches of I. The distance to the next h can be calculated with

∆h = inc(h,m0,m1) − h, at least for h ∈ I. If ∆h is large, then we can decide to simply add

∆h to the current h and continue traversal there. The problem is that the current h may

not be from I, because we reached it via full traversal with isInI(). This is where succ()

can be used, because it works with any h ∈ Hk as input. This is especially useful in the

case of LHC, where random access is expensive due to the required binary search. The

complexity of succ() is the same as inc(), however it has a higher base cost due to the

additional operations.

8.5 Algorithm Selection

A detailed cost analysis is beyond the scope of this paper, however we provide a short guide

on how to decide whether full traversal with isInI() or traversal of the intersection with

inc() should be more eicient. In the case of AHC we established two relationships:

CAHC,isInI = 2k × (cisInI + carray−lookup) (1)

CAHC,inc = |I | × (cinc + carray−lookup) (2)

The full traversal with isInI() is more eicient than using inc() if CAHC,isInI ≤ CAHC,inc .

Lets assume that carray−lookup is negligible (ignoring memory access costs) and further

estimate that 2 × cisInI = cinc because it has roughly half as many instructions. As a result

we see that full iteration should be used if:

2k × (cisInI + carray−lookup) ≤ |I | × (cinc + carray−lookup)

⇒ 2k × cisInI ≤ |I | × (2 × cisInI)

⇒ 2k−1 ≤ |I |

(3)

That means we should use inc() as soon as at least one dimension is restricted. The size |N |

can be calculated as discussed in Corollary 3.

In the case of LHC, isInI() should be used if CLHC,isInI ≤ CLHC,inc . Again, we estimate

that 2× cisInI = cinc . We also assume that clist−next is negligible (ignoring memory access

482 Tilmann Zäschke, Moira C. Norrie

costs) and that clist−lookup costs (log |N |) × (2 × cisInI) for the binary search that requires

twice as many operations for each step as isInI(). This means that full iteration should be

used if:

|N | × (cisInI + clist−next) ≤ |I | × (cinc + clist−lookup)

⇒ |N | × cisInI ≤ |I | × (2 × cisInI + (log |N |) × (2 × cisInI))

⇒ |N | ≤ |I | × (2 + (log |N |) × 2)

⇒
|N |

2×(1+log |N |)
≤ |I |

(4)

For succ(), the decision whether full traversal should be used or not can be made not

only once per node but for each traversal step. However, this implies the additional cost

of calculating the size of the gap and the expected number of possible non-matches. The

size of the gap negatively afects the cost of full traversal, however if there are very few

entries in the node, then full traversal may still be cheaper because the next element may be

beyond the gap, thus allowing faster traversal than with inc(). The probability of Ąnding any

elements in a gap can be more accurately calculated by also taking minimum and maximum

values m0 and m1 into account. This can be further reĄned by considering the number of

elements that have already been traversed compared to the spatial fraction of the node that

has been traversed, i.e. n f ound/|N | vs h/2k . At the same time, the complexity of the analysis

means that hybrid traversal with succ() should probably not be used unless it promises

considerable advantages. This results in considerable complexity and, as indicated above,

we consider it future work that is outside the scope of this paper.

8.6 Experimental Evaluation

Please note that the purpose of this section is exclusively to conĄrm the theoretic evaluation.

Comparative performance test of the PH-tree with other indexes can be found in [ZZN14].

For the experiments we conĄgured the PH-Tree in a special AHC-only mode. The AHC

only mode ensures that the nodes in the tree do not change their representation during

insert/update/delete (CUD) operations. This is useful in situations with very frequent CUD

operations. Figure 5 shows the result for varying dimensionality of a cube-shaped dataset

with 105 randomly distributed points between [0.0, 1.0] in every dimension, this is equivalent

to the CUBE datasets described in [ZZN14]. The results show that, as expected, the use

of inc() can increase performance considerably, especially for increasing dimensionality

which allows for small |I | compared to |N | in the nodesŠ hyper cubes.

When allowing LHC mode, AHC nodes become much rarer and the performance gain is

much less notable. As discussed in Sect. 8.3, inc() is expected to make much less of a

diference in LHC nodes because random access in LHC mode requires a binary search with

O(log n) base cost per access. AHC becomes increasingly rare with larger dimensionality

because nodes have increasingly rarely enough children to justify AHC mode for optimal

Eicient Z-Ordered Traversal of Hypercube Indexes 483

4 6 8 10 12 14

0

10

20

k

µ
s

p
er

q
u
er

y

PH-inc()

PH-no-inc()

Fig. 5: Query execution times for 105 entries with varying dimensionality k of randomly distributed

points between [0.0, 1.0] in every dimension. Each query returned on average 1000 entries.

memory usage. As explained [ZZN14], optimal memory consumption is the normally used

as decisive factor for AHC vs LHC representation.

We acknowledge that the PH-Tree is not an ideal testbed, and that the non-AHC representation

may be rarely used. However, the results clearly demonstrate that the algorithms work and

can eiciently avoid worst case cost scenarios.

9 Conclusion

We discussed three algorithms, including two which we developed, that are useful for

traversing partitions of k-dimensional binary hypercubes. By exploiting the Śparallel

processingŠ of up to 64 bits in standard CPU registers, all three algorithms execute in

constant time for k < 64.

For validation we implemented isInI() and inc() in a specially adapted version of the

PH-tree7. The algorithms behaved correctly and with the expected performance complexity

where our improvements showed increasing efect on the performance with increasing k.

This resulted in 20% to 50% reduced query time for k ≥ 10. Proper evaluation of succ() is

considered future work.

10 Acknowledgements

This research was partially funded by the Hasler Foundation, Switzerland.

References

[Ba97] Bayer, R.: The universal B-tree for multidimensional indexing: General concepts. In: Intl.
Conf. on Worldwide Computing and Its Applications. WWCA Š97Š, pp. 198Ű209, 1997.

[BCA15] Bøgh, K.S.; Chester, S.; Assent, I.: Work-Eicient Parallel Skyline Computation for the
GPU. Proc. of the VLDB Endowment, 8:962Ű973, 2015.

7 The PH-tree source code is available from http://www.phtree.org

http://www.phtree.org

484 Tilmann Zäschke, Moira C. Norrie

[BKS01] Borzsony, S.; Kossmann, D.; Stocker, K.: The Skyline Operator. In: Proc. 17th Intl. Conf.
on Data Engineering. ICDE Š01. IEEE, pp. 421Ű430, 2001.

[Ch15] Chester, S.; Sidlauskas, D.; Assent, I.; Bøgh, K.S.: Scalable Parallelization of Skyline Com-
putation for Multi-Core Processors. In: Proc. 31st IEEE Intl. Conf. on Data Engineering.
ICDE Š15, 2015.

[Fe02] Fenk, R.: The BUB-tree. In: Proc. of 28th Intl. Conf. on Very Large Data Bases. VLDB
Š02, 2002.

[KPS91] Kirschenhofer, P.; Prodinger, H.; Szpankowski, W.: Multidimensional Digital Searching
and Some New Parameters in Tries. Technical Report CSD TR 91-052, Purdue University,
Indiana, USA, 1991.

[LH14] Lee, J.; Hwang, S.-W.: Scalable Skyline Computation Using a Balanced Pivot Selection
Technique. Information Systems, 39:1Ű21, 2014.

[Ma99] Markl, V.: Processing Relational Queries using a Multidimensional Access Technique.
Dissertations in Database and Information Systems-InĄx, 59, 1999.

[MAK03] Mokbel, M.F.; Aref, W.G.; Kamel, I.: Analysis of Multi-Dimensional Space-Filling Curves.
GeoInformatica, 7(3):179Ű209, 2003.

[Ni13] Nishimura, Shoji; Das, Sudipto; Agrawal, Divyakant; El Abbadi, Amr: \ mathcal {MD}-
HBase: design and implementation of an elastic data infrastructure for cloud-scale location
services. Distributed and Parallel Databases, 31(2):289Ű319, 2013.

[OM84] Orenstein, J.A.; Merrett, T.H.: A Class of Data Structures for Associative Searching. In:
Proc. of the 3rd SIGACT-SIGMOD Symp. on Principles of Database Systems. PODS Š84,
pp. 181Ű190, 1984.

[Ra00] Ramsak, F.; Markl, V.; Fenk, R.; Zirkel, M.; Elhardt, K.; Bayer, R.: Integrating the UB-Tree
into a Database System Kernel. In: Proc. of Intl. Conf. on Very Large Data Bases. VLDB
Š00, pp. 263Ű272, 2000.

[Sa94] Sagan, H.: Space-Ąlling Curves. Springer, 1994.

[Sa06] Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann, 2006.

[Sk06] Skopal, T.; Krátkỳ, M.; Pokornỳ, J.; Snášel, V.: A New Range Query Algorithm for
Universal B-trees. Information Systems, 31:489Ű511, 2006.

[TH81] Tropf, H.; Herzog, H.: Multidimensional Range Search in Dynamically Balanced Trees.
Angewandte Informatik, 2:71Ű77, 1981.

[Zä15] Zäschke, T.: , The PH-Tree Revisited. http://www.phtree.org, 2015.

[ZYG11] Zhang, J.; You, S.; Gruenwald, L.: Parallel Quadtree Coding of Large-scale Raster
Geospatial Data on GPGPUs. In: Proc. of 19th ACM SIGSPATIAL Intl. Conf. on
Advances in Geographic Information Systems. GIS Š11. ACM, pp. 457Ű460, 2011.

[ZZN14] Zäschke, T.; Zimmerli, C.; Norrie, M.C.: The PH-Tree: A Space-Eicient Storage Structure
and Multi-Dimensional Index. In: Proc. of Intl. Conf. on Management of Data. SIGMOD
Š14, pp. 397Ű408, 2014.

http://www.phtree.org

