
Hardware-Sensitive Scan
Operator Variants for Compiled

Selection Pipelines

David Broneske, Andreas Meister, Gunter Saake
University of Magdeburg

1

D
S E
B

Databases

Software
Engineering

and

D
S E
B

Introduction Query
Compilation

2

ɣ sum(A*B)

⋈ lo_orderdate = d_datekey

 !d_year=1993 !lo_discount …, lo_quantity

LineorderDates

D
S E
B

Introduction Query
Compilation

2

ɣ sum(A*B)

⋈ lo_orderdate = d_datekey

 !d_year=1993 !lo_discount …, lo_quantity

LineorderDates

D
S E
B

Introduction Query
Compilation

2

ɣ sum(A*B)

⋈ lo_orderdate = d_datekey

 !d_year=1993 !lo_discount …, lo_quantity

LineorderDates

Bandwidth-bound -> compute-bound
Possibility for code optimizations

D
S E
B

Motivating Examples

3

D
S E
B

Motivating Examples

3

Scan Variants for Selection Pipelines 3

2.1 Single-Predicate Variants

There are three implementation strategies for a single-predicate scan. They include to use an
if-clause, which results in a branching variant, to use predication, which results in a branch-
free variant, and to use SIMD to accelerate the predicate evaluation. Furthermore, a SIMD
can be implemented using an if-clause or predication, which adds another possible variant.
Notably, using a multi-threaded implementation is another optimization for scans. However,
multi-threading adds a constant speedup to the before-mentioned variants without changing
the overall performance differences between the three implementation strategies [BS14].

Branching Scan. The code that is generated for a branching scan is pretty simple. The
pipeline itself contains a loop iterating over the input to which the branching scan is adding
an if-clause with the predicate evaluation. Inside the if-clause, subsequent operators will
put their code. In our example in Listing 1, we show the branching scan for a less than

predicate and an aggregation on a specific column that is executed depending on the result
of the predicate evaluation. However, this implementation will only benefit from very high
selectivities (i.e., only a small amount of tuples match), because else the CPU incurs many
branch mispredictions causing considerable performance penalties [BS14; RBZ13].

1 for(int i = 0; i < input_size; ++i){
2 if(col[i] < pred)
3 agg+=agg_col[i];
4 }

List. 1: Branching scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < input_size; ++i){
2 agg+=agg_col[i]⇤(col[i] < pred);
3 }

List. 2: Predicated scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < simd_size; ++i){
2 mask= SIMD_COMP(simd_col[i],pred);
3 if(mask){
4 for (int j=0;j < SIMD_LENGTH;++j){
5 if((mask >> j) & 1)
6 agg+=agg_col[i];
7 }
8 }
9 }

List. 3: SIMD scan for less than predicate
adapted from [BS14].

Predicated Scan. The predicated scan omits an if-clause and will always write a result.
For this, we can use in C++ the return value of the comparison to manipulate the written
result [RBZ13; Ro04]. The comparison will produce 1, if the condition is true, and 0 if
the condition is false. This trick can help for creating an RID list [BS14], but also for
manipulating an aggregate computation. For this, you just multiply the aggregate with the
result of the predicate, which will mask the aggregate value if the condition is false. We
show the resulting code for a predicated aggregating scan in Listing 2.

SIMD Scan. Single Instruction Multiple Data is a technology that enables to execute
one instruction on several data items in parallel. Since most of the processor’s control
logic depends on the number of in-flight instructions and registers, but not on the size of
the registers, a theoretical speedup of factor n for a vector size of n elements is possible.
However, this is hardly achieved in practice. For instance, the SIMD scan cannot benefit
from the full potential, as it is impossible to do branching on a single data item in a SIMD

Branching

D
S E
B

Motivating Examples

3

Scan Variants for Selection Pipelines 3

2.1 Single-Predicate Variants

There are three implementation strategies for a single-predicate scan. They include to use an
if-clause, which results in a branching variant, to use predication, which results in a branch-
free variant, and to use SIMD to accelerate the predicate evaluation. Furthermore, a SIMD
can be implemented using an if-clause or predication, which adds another possible variant.
Notably, using a multi-threaded implementation is another optimization for scans. However,
multi-threading adds a constant speedup to the before-mentioned variants without changing
the overall performance differences between the three implementation strategies [BS14].

Branching Scan. The code that is generated for a branching scan is pretty simple. The
pipeline itself contains a loop iterating over the input to which the branching scan is adding
an if-clause with the predicate evaluation. Inside the if-clause, subsequent operators will
put their code. In our example in Listing 1, we show the branching scan for a less than

predicate and an aggregation on a specific column that is executed depending on the result
of the predicate evaluation. However, this implementation will only benefit from very high
selectivities (i.e., only a small amount of tuples match), because else the CPU incurs many
branch mispredictions causing considerable performance penalties [BS14; RBZ13].

1 for(int i = 0; i < input_size; ++i){
2 if(col[i] < pred)
3 agg+=agg_col[i];
4 }

List. 1: Branching scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < input_size; ++i){
2 agg+=agg_col[i]⇤(col[i] < pred);
3 }

List. 2: Predicated scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < simd_size; ++i){
2 mask= SIMD_COMP(simd_col[i],pred);
3 if(mask){
4 for (int j=0;j < SIMD_LENGTH;++j){
5 if((mask >> j) & 1)
6 agg+=agg_col[i];
7 }
8 }
9 }

List. 3: SIMD scan for less than predicate
adapted from [BS14].

Predicated Scan. The predicated scan omits an if-clause and will always write a result.
For this, we can use in C++ the return value of the comparison to manipulate the written
result [RBZ13; Ro04]. The comparison will produce 1, if the condition is true, and 0 if
the condition is false. This trick can help for creating an RID list [BS14], but also for
manipulating an aggregate computation. For this, you just multiply the aggregate with the
result of the predicate, which will mask the aggregate value if the condition is false. We
show the resulting code for a predicated aggregating scan in Listing 2.

SIMD Scan. Single Instruction Multiple Data is a technology that enables to execute
one instruction on several data items in parallel. Since most of the processor’s control
logic depends on the number of in-flight instructions and registers, but not on the size of
the registers, a theoretical speedup of factor n for a vector size of n elements is possible.
However, this is hardly achieved in practice. For instance, the SIMD scan cannot benefit
from the full potential, as it is impossible to do branching on a single data item in a SIMD

Branching

Scan Variants for Selection Pipelines 3

2.1 Single-Predicate Variants

There are three implementation strategies for a single-predicate scan. They include to use an
if-clause, which results in a branching variant, to use predication, which results in a branch-
free variant, and to use SIMD to accelerate the predicate evaluation. Furthermore, a SIMD
can be implemented using an if-clause or predication, which adds another possible variant.
Notably, using a multi-threaded implementation is another optimization for scans. However,
multi-threading adds a constant speedup to the before-mentioned variants without changing
the overall performance differences between the three implementation strategies [BS14].

Branching Scan. The code that is generated for a branching scan is pretty simple. The
pipeline itself contains a loop iterating over the input to which the branching scan is adding
an if-clause with the predicate evaluation. Inside the if-clause, subsequent operators will
put their code. In our example in Listing 1, we show the branching scan for a less than

predicate and an aggregation on a specific column that is executed depending on the result
of the predicate evaluation. However, this implementation will only benefit from very high
selectivities (i.e., only a small amount of tuples match), because else the CPU incurs many
branch mispredictions causing considerable performance penalties [BS14; RBZ13].

1 for(int i = 0; i < input_size; ++i){
2 if(col[i] < pred)
3 agg+=agg_col[i];
4 }

List. 1: Branching scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < input_size; ++i){
2 agg+=agg_col[i]⇤(col[i] < pred);
3 }

List. 2: Predicated scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < simd_size; ++i){
2 mask= SIMD_COMP(simd_col[i],pred);
3 if(mask){
4 for (int j=0;j < SIMD_LENGTH;++j){
5 if((mask >> j) & 1)
6 agg+=agg_col[i];
7 }
8 }
9 }

List. 3: SIMD scan for less than predicate
adapted from [BS14].

Predicated Scan. The predicated scan omits an if-clause and will always write a result.
For this, we can use in C++ the return value of the comparison to manipulate the written
result [RBZ13; Ro04]. The comparison will produce 1, if the condition is true, and 0 if
the condition is false. This trick can help for creating an RID list [BS14], but also for
manipulating an aggregate computation. For this, you just multiply the aggregate with the
result of the predicate, which will mask the aggregate value if the condition is false. We
show the resulting code for a predicated aggregating scan in Listing 2.

SIMD Scan. Single Instruction Multiple Data is a technology that enables to execute
one instruction on several data items in parallel. Since most of the processor’s control
logic depends on the number of in-flight instructions and registers, but not on the size of
the registers, a theoretical speedup of factor n for a vector size of n elements is possible.
However, this is hardly achieved in practice. For instance, the SIMD scan cannot benefit
from the full potential, as it is impossible to do branching on a single data item in a SIMD

Predicated

D
S E
B

Motivating Examples

3

Scan Variants for Selection Pipelines 3

2.1 Single-Predicate Variants

There are three implementation strategies for a single-predicate scan. They include to use an
if-clause, which results in a branching variant, to use predication, which results in a branch-
free variant, and to use SIMD to accelerate the predicate evaluation. Furthermore, a SIMD
can be implemented using an if-clause or predication, which adds another possible variant.
Notably, using a multi-threaded implementation is another optimization for scans. However,
multi-threading adds a constant speedup to the before-mentioned variants without changing
the overall performance differences between the three implementation strategies [BS14].

Branching Scan. The code that is generated for a branching scan is pretty simple. The
pipeline itself contains a loop iterating over the input to which the branching scan is adding
an if-clause with the predicate evaluation. Inside the if-clause, subsequent operators will
put their code. In our example in Listing 1, we show the branching scan for a less than

predicate and an aggregation on a specific column that is executed depending on the result
of the predicate evaluation. However, this implementation will only benefit from very high
selectivities (i.e., only a small amount of tuples match), because else the CPU incurs many
branch mispredictions causing considerable performance penalties [BS14; RBZ13].

1 for(int i = 0; i < input_size; ++i){
2 if(col[i] < pred)
3 agg+=agg_col[i];
4 }

List. 1: Branching scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < input_size; ++i){
2 agg+=agg_col[i]⇤(col[i] < pred);
3 }

List. 2: Predicated scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < simd_size; ++i){
2 mask= SIMD_COMP(simd_col[i],pred);
3 if(mask){
4 for (int j=0;j < SIMD_LENGTH;++j){
5 if((mask >> j) & 1)
6 agg+=agg_col[i];
7 }
8 }
9 }

List. 3: SIMD scan for less than predicate
adapted from [BS14].

Predicated Scan. The predicated scan omits an if-clause and will always write a result.
For this, we can use in C++ the return value of the comparison to manipulate the written
result [RBZ13; Ro04]. The comparison will produce 1, if the condition is true, and 0 if
the condition is false. This trick can help for creating an RID list [BS14], but also for
manipulating an aggregate computation. For this, you just multiply the aggregate with the
result of the predicate, which will mask the aggregate value if the condition is false. We
show the resulting code for a predicated aggregating scan in Listing 2.

SIMD Scan. Single Instruction Multiple Data is a technology that enables to execute
one instruction on several data items in parallel. Since most of the processor’s control
logic depends on the number of in-flight instructions and registers, but not on the size of
the registers, a theoretical speedup of factor n for a vector size of n elements is possible.
However, this is hardly achieved in practice. For instance, the SIMD scan cannot benefit
from the full potential, as it is impossible to do branching on a single data item in a SIMD

Branching

Scan Variants for Selection Pipelines 3

2.1 Single-Predicate Variants

There are three implementation strategies for a single-predicate scan. They include to use an
if-clause, which results in a branching variant, to use predication, which results in a branch-
free variant, and to use SIMD to accelerate the predicate evaluation. Furthermore, a SIMD
can be implemented using an if-clause or predication, which adds another possible variant.
Notably, using a multi-threaded implementation is another optimization for scans. However,
multi-threading adds a constant speedup to the before-mentioned variants without changing
the overall performance differences between the three implementation strategies [BS14].

Branching Scan. The code that is generated for a branching scan is pretty simple. The
pipeline itself contains a loop iterating over the input to which the branching scan is adding
an if-clause with the predicate evaluation. Inside the if-clause, subsequent operators will
put their code. In our example in Listing 1, we show the branching scan for a less than

predicate and an aggregation on a specific column that is executed depending on the result
of the predicate evaluation. However, this implementation will only benefit from very high
selectivities (i.e., only a small amount of tuples match), because else the CPU incurs many
branch mispredictions causing considerable performance penalties [BS14; RBZ13].

1 for(int i = 0; i < input_size; ++i){
2 if(col[i] < pred)
3 agg+=agg_col[i];
4 }

List. 1: Branching scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < input_size; ++i){
2 agg+=agg_col[i]⇤(col[i] < pred);
3 }

List. 2: Predicated scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < simd_size; ++i){
2 mask= SIMD_COMP(simd_col[i],pred);
3 if(mask){
4 for (int j=0;j < SIMD_LENGTH;++j){
5 if((mask >> j) & 1)
6 agg+=agg_col[i];
7 }
8 }
9 }

List. 3: SIMD scan for less than predicate
adapted from [BS14].

Predicated Scan. The predicated scan omits an if-clause and will always write a result.
For this, we can use in C++ the return value of the comparison to manipulate the written
result [RBZ13; Ro04]. The comparison will produce 1, if the condition is true, and 0 if
the condition is false. This trick can help for creating an RID list [BS14], but also for
manipulating an aggregate computation. For this, you just multiply the aggregate with the
result of the predicate, which will mask the aggregate value if the condition is false. We
show the resulting code for a predicated aggregating scan in Listing 2.

SIMD Scan. Single Instruction Multiple Data is a technology that enables to execute
one instruction on several data items in parallel. Since most of the processor’s control
logic depends on the number of in-flight instructions and registers, but not on the size of
the registers, a theoretical speedup of factor n for a vector size of n elements is possible.
However, this is hardly achieved in practice. For instance, the SIMD scan cannot benefit
from the full potential, as it is impossible to do branching on a single data item in a SIMD

Predicated

Scan Variants for Selection Pipelines 3

2.1 Single-Predicate Variants

There are three implementation strategies for a single-predicate scan. They include to use an
if-clause, which results in a branching variant, to use predication, which results in a branch-
free variant, and to use SIMD to accelerate the predicate evaluation. Furthermore, a SIMD
can be implemented using an if-clause or predication, which adds another possible variant.
Notably, using a multi-threaded implementation is another optimization for scans. However,
multi-threading adds a constant speedup to the before-mentioned variants without changing
the overall performance differences between the three implementation strategies [BS14].

Branching Scan. The code that is generated for a branching scan is pretty simple. The
pipeline itself contains a loop iterating over the input to which the branching scan is adding
an if-clause with the predicate evaluation. Inside the if-clause, subsequent operators will
put their code. In our example in Listing 1, we show the branching scan for a less than

predicate and an aggregation on a specific column that is executed depending on the result
of the predicate evaluation. However, this implementation will only benefit from very high
selectivities (i.e., only a small amount of tuples match), because else the CPU incurs many
branch mispredictions causing considerable performance penalties [BS14; RBZ13].

1 for(int i = 0; i < input_size; ++i){
2 if(col[i] < pred)
3 agg+=agg_col[i];
4 }

List. 1: Branching scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < input_size; ++i){
2 agg+=agg_col[i]⇤(col[i] < pred);
3 }

List. 2: Predicated scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < simd_size; ++i){
2 mask= SIMD_COMP(simd_col[i],pred);
3 if(mask){
4 for (int j=0;j < SIMD_LENGTH;++j){
5 if((mask >> j) & 1)
6 agg+=agg_col[i];
7 }
8 }
9 }

List. 3: SIMD scan for less than predicate
adapted from [BS14].

Predicated Scan. The predicated scan omits an if-clause and will always write a result.
For this, we can use in C++ the return value of the comparison to manipulate the written
result [RBZ13; Ro04]. The comparison will produce 1, if the condition is true, and 0 if
the condition is false. This trick can help for creating an RID list [BS14], but also for
manipulating an aggregate computation. For this, you just multiply the aggregate with the
result of the predicate, which will mask the aggregate value if the condition is false. We
show the resulting code for a predicated aggregating scan in Listing 2.

SIMD Scan. Single Instruction Multiple Data is a technology that enables to execute
one instruction on several data items in parallel. Since most of the processor’s control
logic depends on the number of in-flight instructions and registers, but not on the size of
the registers, a theoretical speedup of factor n for a vector size of n elements is possible.
However, this is hardly achieved in practice. For instance, the SIMD scan cannot benefit
from the full potential, as it is impossible to do branching on a single data item in a SIMD

SIMD [ZR02]

D
S E
B

Motivating Examples

3

0 0.2 0.4 0.6 0.8 1

0

100

200

300

Selectivity

r
e
s
p
o
n
s
e
t
i
m
e
i
n
m
s

a) Single Predicate

0 0.2 0.4 0.6 0.8 1

0

500

1,000

Selectivity

b) Query Q1

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

Selectivity

c) Query Q6

Branching Scan

SIMD Scan

Predicated Scan Predicated SIMD Scan

0 0.2 0.4 0.6 0.8 1

0

100

200

300

Selectivity

r
e
s
p
o
n
s
e
t
i
m
e
i
n
m
s

a) Single Predicate

0 0.2 0.4 0.6 0.8 1

0

500

1,000

Selectivity

b) Query Q1

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

Selectivity

c) Query Q6

Branching Scan

SIMD Scan

Predicated Scan Predicated SIMD Scan

Scan Variants for Selection Pipelines 3

2.1 Single-Predicate Variants

There are three implementation strategies for a single-predicate scan. They include to use an
if-clause, which results in a branching variant, to use predication, which results in a branch-
free variant, and to use SIMD to accelerate the predicate evaluation. Furthermore, a SIMD
can be implemented using an if-clause or predication, which adds another possible variant.
Notably, using a multi-threaded implementation is another optimization for scans. However,
multi-threading adds a constant speedup to the before-mentioned variants without changing
the overall performance differences between the three implementation strategies [BS14].

Branching Scan. The code that is generated for a branching scan is pretty simple. The
pipeline itself contains a loop iterating over the input to which the branching scan is adding
an if-clause with the predicate evaluation. Inside the if-clause, subsequent operators will
put their code. In our example in Listing 1, we show the branching scan for a less than

predicate and an aggregation on a specific column that is executed depending on the result
of the predicate evaluation. However, this implementation will only benefit from very high
selectivities (i.e., only a small amount of tuples match), because else the CPU incurs many
branch mispredictions causing considerable performance penalties [BS14; RBZ13].

1 for(int i = 0; i < input_size; ++i){
2 if(col[i] < pred)
3 agg+=agg_col[i];
4 }

List. 1: Branching scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < input_size; ++i){
2 agg+=agg_col[i]⇤(col[i] < pred);
3 }

List. 2: Predicated scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < simd_size; ++i){
2 mask= SIMD_COMP(simd_col[i],pred);
3 if(mask){
4 for (int j=0;j < SIMD_LENGTH;++j){
5 if((mask >> j) & 1)
6 agg+=agg_col[i];
7 }
8 }
9 }

List. 3: SIMD scan for less than predicate
adapted from [BS14].

Predicated Scan. The predicated scan omits an if-clause and will always write a result.
For this, we can use in C++ the return value of the comparison to manipulate the written
result [RBZ13; Ro04]. The comparison will produce 1, if the condition is true, and 0 if
the condition is false. This trick can help for creating an RID list [BS14], but also for
manipulating an aggregate computation. For this, you just multiply the aggregate with the
result of the predicate, which will mask the aggregate value if the condition is false. We
show the resulting code for a predicated aggregating scan in Listing 2.

SIMD Scan. Single Instruction Multiple Data is a technology that enables to execute
one instruction on several data items in parallel. Since most of the processor’s control
logic depends on the number of in-flight instructions and registers, but not on the size of
the registers, a theoretical speedup of factor n for a vector size of n elements is possible.
However, this is hardly achieved in practice. For instance, the SIMD scan cannot benefit
from the full potential, as it is impossible to do branching on a single data item in a SIMD

Branching

Scan Variants for Selection Pipelines 3

2.1 Single-Predicate Variants

There are three implementation strategies for a single-predicate scan. They include to use an
if-clause, which results in a branching variant, to use predication, which results in a branch-
free variant, and to use SIMD to accelerate the predicate evaluation. Furthermore, a SIMD
can be implemented using an if-clause or predication, which adds another possible variant.
Notably, using a multi-threaded implementation is another optimization for scans. However,
multi-threading adds a constant speedup to the before-mentioned variants without changing
the overall performance differences between the three implementation strategies [BS14].

Branching Scan. The code that is generated for a branching scan is pretty simple. The
pipeline itself contains a loop iterating over the input to which the branching scan is adding
an if-clause with the predicate evaluation. Inside the if-clause, subsequent operators will
put their code. In our example in Listing 1, we show the branching scan for a less than

predicate and an aggregation on a specific column that is executed depending on the result
of the predicate evaluation. However, this implementation will only benefit from very high
selectivities (i.e., only a small amount of tuples match), because else the CPU incurs many
branch mispredictions causing considerable performance penalties [BS14; RBZ13].

1 for(int i = 0; i < input_size; ++i){
2 if(col[i] < pred)
3 agg+=agg_col[i];
4 }

List. 1: Branching scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < input_size; ++i){
2 agg+=agg_col[i]⇤(col[i] < pred);
3 }

List. 2: Predicated scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < simd_size; ++i){
2 mask= SIMD_COMP(simd_col[i],pred);
3 if(mask){
4 for (int j=0;j < SIMD_LENGTH;++j){
5 if((mask >> j) & 1)
6 agg+=agg_col[i];
7 }
8 }
9 }

List. 3: SIMD scan for less than predicate
adapted from [BS14].

Predicated Scan. The predicated scan omits an if-clause and will always write a result.
For this, we can use in C++ the return value of the comparison to manipulate the written
result [RBZ13; Ro04]. The comparison will produce 1, if the condition is true, and 0 if
the condition is false. This trick can help for creating an RID list [BS14], but also for
manipulating an aggregate computation. For this, you just multiply the aggregate with the
result of the predicate, which will mask the aggregate value if the condition is false. We
show the resulting code for a predicated aggregating scan in Listing 2.

SIMD Scan. Single Instruction Multiple Data is a technology that enables to execute
one instruction on several data items in parallel. Since most of the processor’s control
logic depends on the number of in-flight instructions and registers, but not on the size of
the registers, a theoretical speedup of factor n for a vector size of n elements is possible.
However, this is hardly achieved in practice. For instance, the SIMD scan cannot benefit
from the full potential, as it is impossible to do branching on a single data item in a SIMD

Predicated

Scan Variants for Selection Pipelines 3

2.1 Single-Predicate Variants

There are three implementation strategies for a single-predicate scan. They include to use an
if-clause, which results in a branching variant, to use predication, which results in a branch-
free variant, and to use SIMD to accelerate the predicate evaluation. Furthermore, a SIMD
can be implemented using an if-clause or predication, which adds another possible variant.
Notably, using a multi-threaded implementation is another optimization for scans. However,
multi-threading adds a constant speedup to the before-mentioned variants without changing
the overall performance differences between the three implementation strategies [BS14].

Branching Scan. The code that is generated for a branching scan is pretty simple. The
pipeline itself contains a loop iterating over the input to which the branching scan is adding
an if-clause with the predicate evaluation. Inside the if-clause, subsequent operators will
put their code. In our example in Listing 1, we show the branching scan for a less than

predicate and an aggregation on a specific column that is executed depending on the result
of the predicate evaluation. However, this implementation will only benefit from very high
selectivities (i.e., only a small amount of tuples match), because else the CPU incurs many
branch mispredictions causing considerable performance penalties [BS14; RBZ13].

1 for(int i = 0; i < input_size; ++i){
2 if(col[i] < pred)
3 agg+=agg_col[i];
4 }

List. 1: Branching scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < input_size; ++i){
2 agg+=agg_col[i]⇤(col[i] < pred);
3 }

List. 2: Predicated scan for less than
predicate adapted from [BS14].

1 for(int i = 0; i < simd_size; ++i){
2 mask= SIMD_COMP(simd_col[i],pred);
3 if(mask){
4 for (int j=0;j < SIMD_LENGTH;++j){
5 if((mask >> j) & 1)
6 agg+=agg_col[i];
7 }
8 }
9 }

List. 3: SIMD scan for less than predicate
adapted from [BS14].

Predicated Scan. The predicated scan omits an if-clause and will always write a result.
For this, we can use in C++ the return value of the comparison to manipulate the written
result [RBZ13; Ro04]. The comparison will produce 1, if the condition is true, and 0 if
the condition is false. This trick can help for creating an RID list [BS14], but also for
manipulating an aggregate computation. For this, you just multiply the aggregate with the
result of the predicate, which will mask the aggregate value if the condition is false. We
show the resulting code for a predicated aggregating scan in Listing 2.

SIMD Scan. Single Instruction Multiple Data is a technology that enables to execute
one instruction on several data items in parallel. Since most of the processor’s control
logic depends on the number of in-flight instructions and registers, but not on the size of
the registers, a theoretical speedup of factor n for a vector size of n elements is possible.
However, this is hardly achieved in practice. For instance, the SIMD scan cannot benefit
from the full potential, as it is impossible to do branching on a single data item in a SIMD

SIMD [ZR02]

D
S E
B

Motivating Examples

4

0 0.2 0.4 0.6 0.8 1

0

100

200

300

Selectivity

r
e
s
p
o
n
s
e
t
i
m
e
i
n
m
s

a) Single Predicate

0 0.2 0.4 0.6 0.8 1

0

500

1,000

Selectivity

b) Query Q1

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

Selectivity

c) Query Q6

Branching Scan

SIMD Scan

Predicated Scan Predicated SIMD Scan

0 0.2 0.4 0.6 0.8 1

0

100

200

300

Selectivity

r
e
s
p
o
n
s
e
t
i
m
e
i
n
m
s

a) Single Predicate

0 0.2 0.4 0.6 0.8 1

0

500

1,000

Selectivity

b) Query Q1

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

Selectivity

c) Query Q6

Branching Scan

SIMD Scan

Predicated Scan Predicated SIMD Scan

D
S E
B

Motivating Examples

0 0.2 0.4 0.6 0.8 1

0

100

200

300

Selectivity

r
e
s
p
o
n
s
e
t
i
m
e
i
n
m
s

a) Single Predicate

0 0.2 0.4 0.6 0.8 1

0

500

1,000

Selectivity

b) Query Q1

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

Selectivity

c) Query Q6

Branching Scan

SIMD Scan

Predicated Scan Predicated SIMD Scan

4

0 0.2 0.4 0.6 0.8 1

0

100

200

300

Selectivity

r
e
s
p
o
n
s
e
t
i
m
e
i
n
m
s

a) Single Predicate

0 0.2 0.4 0.6 0.8 1

0

500

1,000

Selectivity

b) Query Q1

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

Selectivity

c) Query Q6

Branching Scan

SIMD Scan

Predicated Scan Predicated SIMD Scan

0 0.2 0.4 0.6 0.8 1

0

100

200

300

Selectivity

r
e
s
p
o
n
s
e
t
i
m
e
i
n
m
s

a) Single Predicate

0 0.2 0.4 0.6 0.8 1

0

500

1,000

Selectivity

b) Query Q1

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

Selectivity

c) Query Q6

Branching Scan

SIMD Scan

Predicated Scan Predicated SIMD Scan

D
S E
B

Motivating Examples

0 0.2 0.4 0.6 0.8 1

0

100

200

300

Selectivity

r
e
s
p
o
n
s
e
t
i
m
e
i
n
m
s

a) Single Predicate

0 0.2 0.4 0.6 0.8 1

0

500

1,000

Selectivity

b) Query Q1

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

Selectivity

c) Query Q6

Branching Scan

SIMD Scan

Predicated Scan Predicated SIMD Scan

4

8 Aggregates
1 Filter Predicate

0 0.2 0.4 0.6 0.8 1

0

100

200

300

Selectivity

r
e
s
p
o
n
s
e
t
i
m
e
i
n
m
s

a) Single Predicate

0 0.2 0.4 0.6 0.8 1

0

500

1,000

Selectivity

b) Query Q1

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

Selectivity

c) Query Q6

Branching Scan

SIMD Scan

Predicated Scan Predicated SIMD Scan

0 0.2 0.4 0.6 0.8 1

0

100

200

300

Selectivity

r
e
s
p
o
n
s
e
t
i
m
e
i
n
m
s

a) Single Predicate

0 0.2 0.4 0.6 0.8 1

0

500

1,000

Selectivity

b) Query Q1

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

Selectivity

c) Query Q6

Branching Scan

SIMD Scan

Predicated Scan Predicated SIMD Scan

D
S E
B

Motivating Examples

0 0.2 0.4 0.6 0.8 1

0

100

200

300

Selectivity

r
e
s
p
o
n
s
e
t
i
m
e
i
n
m
s

a) Single Predicate

0 0.2 0.4 0.6 0.8 1

0

500

1,000

Selectivity

b) Query Q1

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

Selectivity

c) Query Q6

Branching Scan

SIMD Scan

Predicated Scan Predicated SIMD Scan

4

8 Aggregates
1 Filter Predicate

1 Aggregate
3 Filter Predicates

0 0.2 0.4 0.6 0.8 1

0

100

200

300

Selectivity

r
e
s
p
o
n
s
e
t
i
m
e
i
n
m
s

a) Single Predicate

0 0.2 0.4 0.6 0.8 1

0

500

1,000

Selectivity

b) Query Q1

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

Selectivity

c) Query Q6

Branching Scan

SIMD Scan

Predicated Scan Predicated SIMD Scan

0 0.2 0.4 0.6 0.8 1

0

100

200

300

Selectivity

r
e
s
p
o
n
s
e
t
i
m
e
i
n
m
s

a) Single Predicate

0 0.2 0.4 0.6 0.8 1

0

500

1,000

Selectivity

b) Query Q1

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

Selectivity

c) Query Q6

Branching Scan

SIMD Scan

Predicated Scan Predicated SIMD Scan

D
S E
B

Motivating Examples

0 0.2 0.4 0.6 0.8 1

0

100

200

300

Selectivity

r
e
s
p
o
n
s
e
t
i
m
e
i
n
m
s

a) Single Predicate

0 0.2 0.4 0.6 0.8 1

0

500

1,000

Selectivity

b) Query Q1

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

Selectivity

c) Query Q6

Branching Scan

SIMD Scan

Predicated Scan Predicated SIMD Scan

4

8 Aggregates
1 Filter Predicate

1 Aggregate
3 Filter Predicates

0 0.2 0.4 0.6 0.8 1

0

100

200

300

Selectivity

r
e
s
p
o
n
s
e
t
i
m
e
i
n
m
s

a) Single Predicate

0 0.2 0.4 0.6 0.8 1

0

500

1,000

Selectivity

b) Query Q1

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

Selectivity

c) Query Q6

Branching Scan

SIMD Scan

Predicated Scan Predicated SIMD Scan

0 0.2 0.4 0.6 0.8 1

0

100

200

300

Selectivity

r
e
s
p
o
n
s
e
t
i
m
e
i
n
m
s

a) Single Predicate

0 0.2 0.4 0.6 0.8 1

0

500

1,000

Selectivity

b) Query Q1

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

Selectivity

c) Query Q6

Branching Scan

SIMD Scan

Predicated Scan Predicated SIMD Scan

When to use which scan variant?

D
S E
B

Evaluation Setup

5

Variants:

Scalar vs. SIMD
Branching vs. Predication

Evaluation Criteria
Number of predicates
Number of aggregates inside loop

Workload & Machine
TPC-H LineItem table SF 10
Intel Xeon E5-2630 v3 with SSE4.2

D
S E
B

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

Branching Scan

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Scan

200

400

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

Predicated Scan

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Predicated Scan

Number of Predicates

6

D
S E
B

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

Branching Scan

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Scan

200

400

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

Predicated Scan

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Predicated Scan

Number of Predicates

6

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

Branching Scan

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Scan

200

400

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

Predicated Scan

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Predicated Scan

D
S E
B

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

Branching Scan

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Scan

200

400

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

Predicated Scan

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Predicated Scan

Number of Predicates

6

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

Branching Scan

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Scan

200

400

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

Predicated Scan

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Predicated Scan For one predicate
SIMD does not pay out

Results:

D
S E
B

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

Branching Scan

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Scan

200

400

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

Predicated Scan

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Predicated Scan

Number of Predicates

6

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

Branching Scan

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Scan

200

400

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

Predicated Scan

0

0.5
1

5

10

0

200

400

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

P

r

e

d

i

c

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Predicated Scan

The more predicates,
the better SIMD

For one predicate
SIMD does not pay out

Results:

D
S E
B

Work Inside the Loop

7

0

0.5
1

0

5

10

0

250

500

750

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

A

g

g

r

e

g

a

t

e

s

T
i
m
e
i
n
m
s

Branching Scan

0

0.5
1

0

5

10

0

250

500

750

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

A

g

g

r

e

g

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Scan

200

400

600

0

0.5
1

0

5

10

0

250

500

750

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

A

g

g

r

e

g

a

t

e

s

T
i
m
e
i
n
m
s

Predicated Scan

0

0.5
1

0

5

10

0

250

500

750

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

A

g

g

r

e

g

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Predicated Scan

D
S E
B

Work Inside the Loop

7

0

0.5
1

0

5

10

0

250

500

750

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

A

g

g

r

e

g

a

t

e

s

T
i
m
e
i
n
m
s

Branching Scan

0

0.5
1

0

5

10

0

250

500

750

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

A

g

g

r

e

g

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Scan

200

400

600

0

0.5
1

0

5

10

0

250

500

750

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

A

g

g

r

e

g

a

t

e

s

T
i
m
e
i
n
m
s

Predicated Scan

0

0.5
1

0

5

10

0

250

500

750

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

A

g

g

r

e

g

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Predicated Scan More aggregates, less
impact of branch
misprediction

Results:

D
S E
B

Work Inside the Loop

7

0

0.5
1

0

5

10

0

250

500

750

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

A

g

g

r

e

g

a

t

e

s

T
i
m
e
i
n
m
s

Branching Scan

0

0.5
1

0

5

10

0

250

500

750

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

A

g

g

r

e

g

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Scan

200

400

600

0

0.5
1

0

5

10

0

250

500

750

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

A

g

g

r

e

g

a

t

e

s

T
i
m
e
i
n
m
s

Predicated Scan

0

0.5
1

0

5

10

0

250

500

750

S

e

l

e

c

t

i

v

i

t

y

P

1

#

o

f

A

g

g

r

e

g

a

t

e

s

T
i
m
e
i
n
m
s

SIMD Predicated Scan

The more aggregates,
the better branching
scans for low selectivity

More aggregates, less
impact of branch
misprediction

Results:

D
S E
B

Decision Trees

8

Number of Predicates

Number of Aggregates

< 6 >= 6

#aggregates

SIMD
Branching

SIMD
Predicated

selectivity

< 0.1 >= 0.1

selectivity

< 0.05 >= 0.05

SIMD
Branching

SIMD
Predicated

#predicates

selectivity

< 0.05 >= 0.05

< 4 >= 4

Branching
Scan

SIMD
Branching

#predicates

< 2 >=2

Predicated
Scan

SIMD
Predicated

D
S E
B

Conclusion

Hash table put / probe (joins, groupings)

9

Pipeline code for filter-&-aggregate pipelines1

1http://git.iti.cs.ovgu.de/dbronesk/BTW-Pipeline-Variants

Future Work
Decision trees as a result of our evaluation in the paper

SIMD outperforms scalar variants for several
predicates

Increasing number of aggregates slows down
predicated variants

Automatic calibration for query compilation

D
S E
B

References
[BBS14] David Broneske, Sebastian Breß, and Gunter Saake. Database Scan Variants on Modern

CPUs: A Performance Study. In Proceedings of the 2nd International Workshop on In-
Memory Data Management and Analytics (IMDM), Lecture Notes in Computer Science,
pages 97–111. Springer, 2014

[ZR02] Jingren Zhou, Kenneth A. Ross: Implementing database operations using SIMD instructions.
In: SIGMOD. Pp. 145–156, 2002.

10

D
S E
B

Selectivity of Two
Predicates

11

selectivity1

Bitwise AND

Conditional
AND

SIMD
Predicated

selectivity2

< 0.05 >= 0.05

< 0.05 >= 0.05

D
S E
B

Selectivity of Two
Predicates

12

0

0.5

1

0

0.5
1

0

200

S

e

l

e

c

t

i

v

i

t

y

P

1

S

e

l

e

c

t

i

v

i

t

y

P

2

T
i
m
e
i
n
m
s

Conditional AND Scan

0

0.5

1

0

0.5
1

0

200

S

e

l

e

c

t

i

v

i

t

y

P

1

S

e

l

e

c

t

i

v

i

t

y

P

2

Bitwise AND Scan

100

200

300

0

0.5

1

0

0.5
1

0

200

S

e

l

e

c

t

i

v

i

t

y

P

1

S

e

l

e

c

t

i

v

i

t

y

P

2

T
i
m
e
i
n
m
s

SIMD Scan

0

0.5

1

0

0.5
1

0

200

S

e

l

e

c

t

i

v

i

t

y

P

1

S

e

l

e

c

t

i

v

i

t

y

P

2

Predicated Scan

0

0.5

1

0

0.5
1

0

200

S

e

l

e

c

t

i

v

i

t

y

P

1

S

e

l

e

c

t

i

v

i

t

y

P

2

SIMD Predicated Scan

