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CLOUD IAAS

Idea: Rent virtual machines from and run your software
(e.g., DBMS, Spark, etc.)
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large
Typical Pricing Models
* On-demand: fixed price per hour (e.g., 10 cent/hour)
 Reserved: basic fee based on contract over x years +
lower hourly rate compared to on-demand




MARKET-BASED IAAS

IaaS providers overprovision their resources

Market-based IaaS: Overcapacity is sold under a
dynamic pricing scheme

 High Overcapacity => Low Price

 Low Overcapacity => High Price (BUT also other
parameters influence price)

Main provider: Amazon Spot Instances




AWS INSTANCES SPOT: USAGE MODEL

Bid Price =2 Market Price: instance is granted

Bid Price < Market Price: instance is not granted / revoked
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AW, SPOT INSTANCES: PRICE MODEL

Prices are different per instance type + region + zone

Product : Linux/UNIX v Instance type: ci.medium ¥ Daterange: 1 month v Availability zone: eu-west-ic v
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AW SPOT INSTANCES: BILLING

Billing is based on an intexrval € (lh for Spot)

Product : Linux/UNIX (Amazon VPC) ¥ Instance type: c1i.medium -
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Costs: price at 1+nch time*intervals (re-evaluated every interval)

Discount: for non-full intervals if instance is terminated by provider
o




CHALLENGES FOR ANALYTICS ON SPOT

Main goal should be to save monetary cost

Fault-tolerance of systems plays a key role

Other Peculiarities:

all machines of the same type fail together

weilrd almost binary (high price, low price) behavior
price fluctuations for some types suddenly stopped
abnormally high spikes

etc.




PROBLEM STATEMENT

* Given job J (e.g., Map-Reduce program, a SQL query)
and a fault-tolerance strategy FT

* Find the best deployment strategy to minimize the
overall monetary cost of executing Q

Deployment Strategy?

Price: 5¢ / hour

Type: 3 x m4.large




COARSE-GRAINED RESTART

Scheme implemented in a Distributed DBMS
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FINE-GRAINED RESTART + CHECKPOINTS

Scheme implemented in Hadoop
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FINE-GRAINED RESTART + LINEAGE

Scheme implemented in Spark
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CONTRIBUTIONS OF THIS PAPER?

Cost analysis for different fault-tolerance strategies
* Coarse-grained Query Restart
* Fine-grained Restart / Check pointing

* Fine-grained Restart / Lineage

Result 1. It is never beneficial to shut down an instance before the
end of the billing interval €.




COARSE-GRAINED RESTART

Runtime costs of a job J (wo failure)
* Job is composed of multiple tasks
* Runtime of task on one instance: R

* Runtime of task on n instances: R/n

On failure: Complete Restart

Result 2. Running a job in a single billing interval € is cheaper than
running the job with fewer resources over several intervals




Result 2. Running a job in a single billing interval € is cheaper than
running the job with fewer resources over several intervals

* Assume that g m is the number of machines to run
the job in exactly one billing interval

 Then m the number of machines to run the job in gq
intervals

* Thus, cost for a successful run are equal

 However, probability for failure increases with
runtime k
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COARSE-GRAINED RESTART

Runtime costs of a Job J (wo failure)
* Job is composed of multiple tasks

* Runtime of task on one instance: R = Repy /Icpy
(Repy: Total Cycles, Ipy: Cycles of instance in one €)

e Runtime of task on n instances: R/n

On failure: Complete Restart

Result 2. Running a job in a single billing interval € is cheaper than
running the job with fewer resources over several intervals

Result 3. Using more machines to finish early can be beneficial
(depending on the failure rate 7).




EXP:VARYING # OF MACHINE

Low Failure Rate (A =0.75 -> every 800 minutes)
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Setup: us-east-1c—-ml.large-Linux instance type with on-demand price of
$0.175 and a bid price of $0.0263 (15% of on-demand price)




EXP:VARYING # OF MACHINE

High Failure Rate (A =1.8 -> every 33 minutes)
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Setup: us-east-1c—-ml.large-Linux instance type with on-demand price of
$0.175 and a bid price of $0.0263 (15% of on-demand price)




FINE-GRAINED + CHECKPOINT

Result 4. The expected cost of using n or 2 - n machines for a job is
the “same” with check-pointing

Intuition:
* Checkpointing allows to resume work “w/o loosing” invested work

* Doubling machines reduces runtime by half but increases cost per
billing interval by two




FINE-GRAINED + CHECKPOINT

Result 4. The expected cost of using n or 2 - n machines for a job is
the “same” with check-pointing

Intuition:
* Checkpointing allows to resume work “w/o loosing” invested work

* Doubling machines reduces runtime by half but increases cost per
billing interval by two

Result 5. Using a single instance to finish a job in a single check-
pointing interval is the cheapest and most risk-averse option.

Intuition:
* High variance for one interval (i.e., pay nothing or all)

» Less variance for more intervals




EXP: ONEVS. MANY MACHINES

Medium of the prices from 4 years as the bid- price

1 instance 100 instance

for 100 hours for 1 hours
g ($) Y B o
m2.2xlarge 9 12 17 15
m2.4xlarge 15 18 32 30
m2.xlarge 5 5 11 7

Setup: three machine types, m2.2xlarge, m2.4xlarge, and m2.xlarge all from
the us-east-la data center




FINE-GRAINED + LINEAGE

Result 6. Same as Coarse-grained Query Restart on Spot Instances if
we do not mix instance types




CONCLUSIONS

Market-based IaaS for Data Analytics

Main Contributions: Cost Analysis for different FT schemes
* Query Restart: Get more machines to pay less
* Fine-grained / Checkpointed (Hadoop): One machine saves most

 Fine-grained / Lineage (Spark): Same as query restart

Future work:
* Mixing instance types, bid prices for deployment

* Minimize runtime for given budget




