SPOTLYTICS: HOW TO USE CLOUD MARKET
PLACES FOR DATA ANALYTICS?

TIM KRASKA, ELKHAN DADASHOV, CARSTEN BINNIG

CLOUD IAAS

Idea: Rent virtual machines from and run your software
(e.g., DBMS, Spark, etc.)

small medium large extra
large
Typical Pricing Models
* On-demand: fixed price per hour (e.g., 10 cent/hour)
 Reserved: basic fee based on contract over x years +
lower hourly rate compared to on-demand

MARKET-BASED IAAS

IaaS providers overprovision their resources

Market-based IaaS: Overcapacity is sold under a
dynamic pricing scheme

 High Overcapacity => Low Price

 Low Overcapacity => High Price (BUT also other
parameters influence price)

Main provider: Amazon Spot Instances

AWS INSTANCES SPOT: USAGE MODEL

Bid Price =2 Market Price: instance is granted

Bid Price < Market Price: instance is not granted / revoked
Product : Linux/UNIX v Instance type: ci.medium ¥ Daterange: 1 month v Availability zone: eu-west-ic v
$0.6000
$0.5000
$0.4000

$0.3000

Market Price

$0.2000

$0.1000 ‘ 1 | I Bid Price

Jul 11 Jul 14 Jul 17 Jul 20 Jul 23 Jul 26 Jul 29 Aug 1 Aug 4

$0.0000

AW, SPOT INSTANCES: PRICE MODEL

Prices are different per instance type + region + zone

Product : Linux/UNIX v Instance type: ci.medium ¥ Daterange: 1 month v Availability zone: eu-west-ic v

$0.6000
$0.5000
$0.4000
$0.3000
$0.2000 Market Price On-demand
| (no contract)
$0.1000
eserved (3 years
LL—L‘.L_hﬂ-_J L) Lq— - (v)

$0.0000
Jul 11 Jul 14 Jul 17 Jul 20 Jul 23 Jul 26 Jul 29 Aug 1 Aug 4

AW SPOT INSTANCES: BILLING

Billing is based on an intexrval € (lh for Spot)

Product : Linux/UNIX (Amazon VPC) ¥ Instance type: c1i.medium -

$0.2000
— = ™
$0.1500
$0.1000
$0.050 i Bid Price
J _’A = 5 cent
- — UV LA _ree
$0.0000
0:00 2:00 4:00 6:00 8:00 10:00 12

Costs: price at 1+nch time*intervals (re-evaluated every interval)

Discount: for non-full intervals if instance is terminated by provider
o

CHALLENGES FOR ANALYTICS ON SPOT

Main goal should be to save monetary cost

Fault-tolerance of systems plays a key role

Other Peculiarities:

all machines of the same type fail together

weilrd almost binary (high price, low price) behavior
price fluctuations for some types suddenly stopped
abnormally high spikes

etc.

PROBLEM STATEMENT

* Given job J (e.g., Map-Reduce program, a SQL query)
and a fault-tolerance strategy FT

* Find the best deployment strategy to minimize the
overall monetary cost of executing Q

Deployment Strategy?

Price: 5¢ / hour

Type: 3 x m4.large

COARSE-GRAINED RESTART

Scheme implemented in a Distributed DBMS

1 \

A

Recovery: Restart
complete query

1\:‘3—>4/ §5
2/

Node 1

Node 2

FINE-GRAINED RESTART + CHECKPOINTS

Scheme implemented in Hadoop

Node 1

Recovery: Restart of individual
operator instances

Node 2

FINE-GRAINED RESTART + LINEAGE

Scheme implemented in Spark

- 1

f T —0

2 /2\ / \
| Recovery: Restart of individual operator
instances + lineage

W@

Node 2

CONTRIBUTIONS OF THIS PAPER?

Cost analysis for different fault-tolerance strategies
* Coarse-grained Query Restart
* Fine-grained Restart / Check pointing

* Fine-grained Restart / Lineage

Result 1. It is never beneficial to shut down an instance before the
end of the billing interval €.

COARSE-GRAINED RESTART

Runtime costs of a job J (wo failure)
* Job is composed of multiple tasks
* Runtime of task on one instance: R

* Runtime of task on n instances: R/n

On failure: Complete Restart

Result 2. Running a job in a single billing interval € is cheaper than
running the job with fewer resources over several intervals

Result 2. Running a job in a single billing interval € is cheaper than
running the job with fewer resources over several intervals

* Assume that g m is the number of machines to run
the job in exactly one billing interval

 Then m the number of machines to run the job in gq
intervals

* Thus, cost for a successful run are equal

 However, probability for failure increases with
runtime k

R ()

A n _A.(k—l) k _l(k—l) k
cn (ee —1) kgl e £ {EJ (1—-7)+e £ EJ

m

COARSE-GRAINED RESTART

Runtime costs of a Job J (wo failure)
* Job is composed of multiple tasks

* Runtime of task on one instance: R = Repy /Icpy
(Repy: Total Cycles, Ipy: Cycles of instance in one €)

e Runtime of task on n instances: R/n

On failure: Complete Restart

Result 2. Running a job in a single billing interval € is cheaper than
running the job with fewer resources over several intervals

Result 3. Using more machines to finish early can be beneficial
(depending on the failure rate 7).

EXP:VARYING # OF MACHINE

Low Failure Rate (A =0.75 -> every 800 minutes)

.DODDD.DDD........
! 4125
&) B L)
420
v
g &0 | 17 : ooo Work completion probability
e 1 »»» Payment probability 115 A
% > s*e AVG expected costs i
2 e === On-Demand payment 110
o 40t ‘.. Spot payment
a '-...
.....'.0 a - 5
S
20 i . ®esee LTI P
40
0 | | | | | |
0 10 20 30 40 50 60 F 70
. Many Anticipated work completion time oW
instances instances

Setup: us-east-1c—-ml.large-Linux instance type with on-demand price of
$0.175 and a bid price of $0.0263 (15% of on-demand price)

EXP:VARYING # OF MACHINE

High Failure Rate (A =1.8 -> every 33 minutes)

100 | o0 e 4125
(&) ...DDD e
O°
o e
80 - % i {20
0 *
3 o . ooo Work completion probability
2 60 - °°°.'” »»» Payment probability 115 A
= "o, e*e AVG expected costs
‘S . Joq B
B 40} .o °° = On-Demand payment 110
o - %4 Spot payment
a ot Sodog o : :
20 |- ‘. ' : 000 45
0.. E oooo OWOW 9 See
0 P eedensastestrsatsetetes abesnaes & b, 0
| | 1 1 1 1
OMany 10 20 30 40 50 60 Few 70
instances Anticipated work completion time instances

Setup: us-east-1c—-ml.large-Linux instance type with on-demand price of
$0.175 and a bid price of $0.0263 (15% of on-demand price)

FINE-GRAINED + CHECKPOINT

Result 4. The expected cost of using n or 2 - n machines for a job is
the “same” with check-pointing

Intuition:
* Checkpointing allows to resume work “w/o loosing” invested work

* Doubling machines reduces runtime by half but increases cost per
billing interval by two

FINE-GRAINED + CHECKPOINT

Result 4. The expected cost of using n or 2 - n machines for a job is
the “same” with check-pointing

Intuition:
* Checkpointing allows to resume work “w/o loosing” invested work

* Doubling machines reduces runtime by half but increases cost per
billing interval by two

Result 5. Using a single instance to finish a job in a single check-
pointing interval is the cheapest and most risk-averse option.

Intuition:
* High variance for one interval (i.e., pay nothing or all)

» Less variance for more intervals

EXP: ONEVS. MANY MACHINES

Medium of the prices from 4 years as the bid- price

1 instance 100 instance

for 100 hours for 1 hours
g ($) Y B o
m2.2xlarge 9 12 17 15
m2.4xlarge 15 18 32 30
m2.xlarge 5 5 11 7

Setup: three machine types, m2.2xlarge, m2.4xlarge, and m2.xlarge all from
the us-east-la data center

FINE-GRAINED + LINEAGE

Result 6. Same as Coarse-grained Query Restart on Spot Instances if
we do not mix instance types

CONCLUSIONS

Market-based IaaS for Data Analytics

Main Contributions: Cost Analysis for different FT schemes
* Query Restart: Get more machines to pay less
* Fine-grained / Checkpointed (Hadoop): One machine saves most

 Fine-grained / Lineage (Spark): Same as query restart

Future work:
* Mixing instance types, bid prices for deployment

* Minimize runtime for given budget

