
SPOTLYTICS: HOW TO USE CLOUD MARKET
PLACES FOR DATA ANALYTICS?

TIM KRASKA, ELKHAN DADASHOV, CARSTEN BINNIG

CLOUD IAAS

Idea: Rent virtual machines from and run your software
(e.g., DBMS, Spark, etc.)

Typical Pricing Models
•  On-demand: fixed price per hour (e.g., 10 cent/hour)
•  Reserved: basic fee based on contract over x years +

lower hourly rate compared to on-demand

small medium large extra
large

MARKET-BASED IAAS

IaaS providers overprovision their resources

Market-based IaaS: Overcapacity is sold under a
dynamic pricing scheme

•  High Overcapacity => Low Price

•  Low Overcapacity => High Price (BUT also other
parameters influence price)

Main provider: Amazon Spot Instances

3

AWS INSTANCES SPOT: USAGE MODEL

Bid Price ≥ Market Price: instance is granted

Bid Price < Market Price: instance is not granted / revoked

Bid Price
= 5 cent

Market Price

AWS SPOT INSTANCES: PRICE MODEL

5

On-demand
(no contract)

Reserved (3 years)

Market Price

Prices are different per instance type + region + zone

AWS SPOT INSTANCES: BILLING

6

Bid Price
= 5 cent

Discount: for non-full intervals if instance is terminated by provider

Costs: price at launch time*intervals (re-evaluated every interval)

Billing is based on an intervalε (1h for Spot)

CHALLENGES FOR ANALYTICS ON SPOT

Main goal should be to save monetary cost

Fault-tolerance of systems plays a key role

Other Peculiarities:

•  all machines of the same type fail together

•  weird almost binary (high price, low price) behavior

•  price fluctuations for some types suddenly stopped

•  abnormally high spikes

•  etc.

PROBLEM STATEMENT

•  Given job J (e.g., Map-Reduce program, a SQL query)
and a fault-tolerance strategy FT

•  Find the best deployment strategy to minimize the
overall monetary cost of executing Q

Deployment Strategy?

Type: 3 x m4.large

Price: 5c / hour

COARSE-GRAINED RESTART

9

2

1

3 4 5

2

1

3 4 5

N
od

e
1

N
od

e
2

2

1

3 4 5

2

1

3 4 5

Recovery: Restart
complete query

Scheme implemented in a Distributed DBMS

FINE-GRAINED RESTART + CHECKPOINTS

10

2

1

3 4 5

2

1

3 4 5

N
od

e
1

N
od

e
2

Tem
p

Tem

p

Tem
p

Tem
p

Tem
p

Tem

p

Tem
p

Tem
p

4

Recovery: Restart of individual
operator instances

Scheme implemented in Hadoop

FINE-GRAINED RESTART + LINEAGE

11

2

1

3 4 5

2

1

3 4 5

N
od

e
1

N
od

e
2

Recovery: Restart of individual operator
instances + lineage

2

1

3 4

Scheme implemented in Spark

CONTRIBUTIONS OF THIS PAPER?

Cost analysis for different fault-tolerance strategies

•  Coarse-grained Query Restart

•  Fine-grained Restart / Check pointing

•  Fine-grained Restart / Lineage

Result 1. It is never beneficial to shut down an instance before the
end of the billing interval ε.

COARSE-GRAINED RESTART

Runtime costs of a job J (wo failure)

•  Job is composed of multiple tasks

•  Runtime of task on one instance: R

•  Runtime of task on n instances: R/n

On failure: Complete Restart

Result 2. Running a job in a single billing interval ε is cheaper than
running the job with fewer resources over several intervals

•  Assume that q · m is the number of machines to run
the job in exactly one billing interval

•  Then m the number of machines to run the job in q
intervals

•  Thus, cost for a successful run are equal

•  However, probability for failure increases with
runtime k

Result 2. Running a job in a single billing interval ε is cheaper than
running the job with fewer resources over several intervals

COARSE-GRAINED RESTART

Runtime costs of a Job J (wo failure)

•  Job is composed of multiple tasks

•  Runtime of task on one instance: R = RCPU /ICPU
(RCPU: Total Cycles, ICPU: Cycles of instance in oneε)

•  Runtime of task on n instances: R/n

On failure: Complete Restart

Result 3. Using more machines to finish early can be beneficial
(depending on the failure rate λ).

Result 2. Running a job in a single billing interval ε is cheaper than
running the job with fewer resources over several intervals

EXP: VARYING # OF MACHINE
Low Failure Rate (λ=0.75 -> every 800 minutes)

Setup: us-east-1c–m1.large–Linux instance type with on-demand price of
$0.175 and a bid price of $0.0263 (15% of on-demand price)

 Few
instances

Many
instances

EXP: VARYING # OF MACHINE
High Failure Rate (λ=1.8 -> every 33 minutes)

Setup: us-east-1c–m1.large–Linux instance type with on-demand price of
$0.175 and a bid price of $0.0263 (15% of on-demand price)

 Few
instances

Many
instances

FINE-GRAINED + CHECKPOINT

Intuition:

•  Checkpointing allows to resume work “w/o loosing” invested work

•  Doubling machines reduces runtime by half but increases cost per
billing interval by two

Result 4. The expected cost of using n or 2 · n machines for a job is
the “same” with check-pointing

FINE-GRAINED + CHECKPOINT

Intuition:

•  Checkpointing allows to resume work “w/o loosing” invested work

•  Doubling machines reduces runtime by half but increases cost per
billing interval by two

Intuition:

•  High variance for one interval (i.e., pay nothing or all)

•  Less variance for more intervals

Result 4. The expected cost of using n or 2 · n machines for a job is
the “same” with check-pointing

Result 5. Using a single instance to finish a job in a single check-
pointing interval is the cheapest and most risk-averse option.

EXP: ONE VS. MANY MACHINES
Medium of the prices from 4 years as the bid- price

Setup: three machine types, m2.2xlarge, m2.4xlarge, and m2.xlarge all from
the us-east-1a data center

FINE-GRAINED + LINEAGE

Result 6. Same as Coarse-grained Query Restart on Spot Instances if
we do not mix instance types

CONCLUSIONS

Market-based IaaS for Data Analytics

Main Contributions: Cost Analysis for different FT schemes

•  Query Restart: Get more machines to pay less

•  Fine-grained / Checkpointed (Hadoop): One machine saves most

•  Fine-grained / Lineage (Spark): Same as query restart

Future work:

•  Mixing instance types, bid prices for deployment

•  Minimize runtime for given budget

