
B. Mitschang et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2017),

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 351

An Experimental Analysis of Different Key-Value Stores and

Relational Databases

David Gembalczyk1, Felix Martin Schuhknecht2, Jens Dittrich3

Abstract: Nowadays, databases serve two main workloads: Online Transaction Processing (OLTP)
and Online Analytic Processing (OLAP). For decades, relational databases dominated both areas.
With the hype on NoSQL databases, the picture has changed. Initially designed as inter-process hash
tables handling OLTP requested, some key-value store vendors have started to tackle the area of
OLAP as well. Therefore, in this performance study, we compare the relational databases PostgreSQL,
MonetDB, and HyPer with the key-value stores Redis and Aerospike in their write, read, and analytical
capabilities. Based on the results, we investigate the reasons of the database’s respective advantages
and disadvantages.

Keywords: Relational Systems, Key-Value Stores, OLTP, OLAP, NoSQL, Experiments & Analysis

1 Introduction

Nowadays, databases are almost present everywhere. Obvious application areas are for

instance Big Data Analytics, back-ends for e-commerce systems, session storage for

webservers, or embedded systems like smartphones or activity trackers. Although databases

are applied in so many places, they serve mainly two workloads: Online Transaction

Processing (OLTP) and Online Analytic Processing (OLAP). Relational databases have

started their triumphant advance after the introduction of the relational model in the area

of the databases in 1970 [Co70]. Some of them focused only on OLAP or only OLTP

deploying specific optimizations, respectively. Since around 2009, a different category of

databases appeared and became hyped, the so-called NoSQL databases [SF12, pp. 9-12].

Within this category, one group of competitors for the domain of OLTP are key-value

stores. Initially intended to serve just as inter-process hash tables, they provide today much

more functionality than just storage and retrieval of key-value pairs. Some vendors, such as

Aerospike, even started to tackle the area of OLAP.

Regarding the recent development, the following question emerges: what distinguishes

these systems besides the way of storing their content and what are their advantages and

disadvantages? To provide an answer to this question, we compare PostgreSQL, MonetDB,

and HyPer as relational databases and Redis and Aerospike as key-value stores. Additionally,

we use two data types, Hstore and JSONB, within PostgreSQL to simulate a storage similar

to Redis and Aerospike in order to get a better understanding of how key-value stores

differ from classical relational systems. We make a performance study to compare the

aforementioned databases and simulations in three categories: write queries, read queries,

1 Saarland Informatics Campus, Information Systems, E1.1 66123 SB, s9dagemb@stud.uni-saarland.de
2 Saarland Informatics Campus, Information Systems, E1.1 66123 SB, felix.schuhknecht@infosys.uni-saarland.de
3 Saarland Informatics Campus, Information Systems, E1.1 66123 SB, jens.dittrich@infosys.uni-saarland.de

s9dagemb@stud.uni-saarland.de
felix.schuhknecht@infosys.uni-saarland.de
jens.dittrich@infosys.uni-saarland.de

352 David Gembalczyk, Felix Martin Schuhknecht, Jens Dittrich

and more complex analytical queries. In the first category, we investigate how fast these

databases can insert and delete content. The second category focuses on two access methods

to read content: besides of simple selects, we examine the efficiency of secondary indexes.

Finally, the last category utilizes queries which are provided by TPC-H [Co14] and compares

the databases’ OLAP capabilities.

1.1 Relational Databases and Key-Value Stores

Table 1 and Table 2 show the relational systems respectively the key-value store we discuss in

this work. Alongside, we present the configurations that have been applied in this evaluation.

Note that the used configurations are only subsets of all possible configurations.

Configuration PostgreSQL MonetDB HyPer (Demo) [KN10]

Layouts
Row-store, Hstore,

JSONB
Column-store Column-store

Concurrency MVCC Optimistic CC Chunking & MVCC

Secondary Indexes yes (manual) yes (on-demand) yes (manual)

Prepared Statements yes yes no

Tab. 1: Relational Systems alongside with their properties.

Configuration Redis Aerospike

Layouts
Predefined Datastructures (Hashes,

Ordered Sets)
JSON

Concurrency Serialized Multi-threaded

Secondary Indexes simulated with Ordered Sets yes (manual)

UDFs yes (LUA) yes (LUA)

Tab. 2: Key-Value Stores alongside with their used properties.

1.2 Related Work

In the past years, there has been work on comparing systems of different types. In [AMH08]

the authors try to answer the question how different column-stores and row-stores are.

They find that column-stores can be simulated by row-stores to a certain degree and thus

speed-up the queries. The authors of [Kl15] compare Riak, MongoDB, and Cassandra as

representatives of the NoSQL-groups key-value store, document store, and column store

respectively using the YCSB benchmark. One key point in this comparison is the influence of

different consistency assumptions within a cluster of nine nodes. A performance comparison

between Microsoft SQL Server Express and MongoDB is made in [PPV13] based on a

custom benchmark. According to their findings MongoDB is faster with OLTP queries using

the primary key whereas the relational database is better with aggregate queries and updates

based on non-key attributes. In [Fl12] the authors draw a comparison between Microsoft’s

relational database Parallel Data Warehouse (PDW), the document store MongoDB, and the

Hadoop based solution Hive. In the TPC-H benchmark PDW is for smaller data sets up to

35 times faster than Hive. For the largest set PDW is still 9 times faster. PDW and Hive are

faster than both MongoDB versions (one with client-side sharding and one with server-side

sharding) which “comes in contrast with the widely held belief that relational databases

might be too heavyweight for this type of workload” [Fl12].

An Experimental Analysis of Different Key-Value Stores and Relational Databases 353

1.3 Comparing Apples and Oranges

Comparing two databases, by all means, is not an easy task and may result in comparing

apples to oranges. The first and maybe most obvious point is comparing disk-based with

in-memory systems. To minimize this discrepancy, we do the following: first, we store

the database files on a RAM disk to improve at least the disk access times. Second, if

possible we enlarge the caches and make sure the benchmark makes the same requests

during each run. During the first run the database will load most of the data into the caches.

Afterwards, we omit the first run from the results. Another difficulty are the different client

interfaces used to communicate with the servers. SQL in connection with a programming

language specific database binding is the de facto standard to use relational systems in client

applications. In the case of Java it is JDBC and a database specific driver. In contrast, as a

result of the variety of features, almost all key-value stores have their own client libraries,

sometimes even multiple different libraries such as in the case of Redis. Finally, it remains

the question how to compare single and multi-threaded databases. Well, there are multiple

ways to enforce a single-threaded usage or to simulate multi-threading using multiple local

instances and client-side sharding. Either way, it is unfair to one or another because they

are particularly designed with one of these two concepts in mind. We will discuss these

comparison issues in the respective experiments in more detail.

2 Experimental Setup

All experiments are performed on a machine equipped with two Intel Xeon X5690 hexacore

CPUs running at 3.47 GHz with 192 GB DDR3-1066 RAM. All BIOS settings are set to

default. In total the system runs with 24 hardware threads. The installed operating system is

Debian 8.3 with kernel version 3.16.0-4-amd64 and openjdk 1.7.0 64-bit is used as java

runtime environment. The following versions of the databases and their bindings are used:

• PostgreSQL 9.5.2 with PostgreSQL JDBC driver 9.4.1207

• MonetDB 11.21.13(Jul2015-SP2) with MonetDB JDBC driver 2.19

• HyPer 0.5 demo with PostgreSQL JDBC driver 9.4.1207

• Redis 3.0.6 with java client jedis 2.8.0

• Aerospike 3.7.2 community edition with java client 3.1.8

2.1 A Custom Benchmark

The simplest way would be to use and extend YCSB (Yahoo! Cloud Serving Bench-

mark) [Co10]. Nevertheless, we are going see in the first experiment that YCSB has one

major disadvantage: it has a rather poor performance. The reason for this lies in its design

decisions, which are aimed at providing flexibility and extensibility. Therefore, we create

a custom benchmark tool to address these problems. A requirement besides the high

throughput is scalability in terms of concurrent clients and batch sizes. While YCSB has

also support for multiple clients it lacks the support for grouping multiple queries of the

same type into one batch. Using batches reduces the amount of requests send to the database

and in consequence overhead by network IO. As foundation for the benchmarks a slightly

modified TPC-H schema is used. An additional attribute has been introduced into both

the partsupp and lineitem tables which serve as artificial primary keys. This change

is made rather for the relational databases than for the key-value stores. A concatenated

key might result in multiple comparisons, for each part of it, whereas in key-value stores

354 David Gembalczyk, Felix Martin Schuhknecht, Jens Dittrich

always a single value is used as primary key. On top of it the provided generator tool is

used to generate the test data. Overall the new benchmark tool is split into three main parts:

(1) The query generator is responsible for creating all query data in a generic way. (2) The

query converter, as the name states, converts the generic query data as far as possible into

actual database specific statements. Afterwards, these are stored in a shared queue. (3) The

actual query threads get the statements out of the shared queue and perform the queries.

Besides, in case of PostgreSQL and MonetDB we use prepared statements. The available

HyPer demo lacks of support for prepared statements. Therefore, usual statements are used.

2.2 Database Schema

In general, seven database variants are subjects in the following experiments: the relational

ones are PostgreSQL, HyPer, and MonetDB which are respectively denoted as PG-row,

HyPer, and MonetDB. In addition, for PostgreSQL we also test the Hstore and JSONB

data types denoted as PG-hstore and PG-jsonb. With these two data types we are able

to simulate the behavior of Redis and Aerospike with PostgreSQL. The key-value stores

Aerospike and Redis are denoted as AS-simple and Redis. As mentioned previously a

modified TPC-H schema is used for the benchmarks. It is obvious that this schema is

replicated inside the relational databases. Nevertheless, the schema needs to be mapped

to both key-value stores, PG-hstore, and PG-jsonb. For Redis all records are stored in one

table. The keys consist of the table name and the primary key value, for example nation3,

customer146, or lineitem5890412. Hashes are used as data structures for the values

with the column names as the corresponding field names. For Aerospike each table goes

into a corresponding set and the primary keys of the rows serve as the keys for the records

within the sets. The columns of each table are also mapped to corresponding bins in each

record. For PG-hstore and PG-jsonb a similar schema with all eight tables is used but all

tables have only two columns. One is the primary key and the other is the value, which takes

all the attributes. All three PostgreSQL variants are stored within separate databases.

3 Experimental Analysis

Each experiment contains one or more benchmark types. For each database variant the

benchmark performs four consecutive runs, one warm-up and three measuring runs. During

each run, 50,000 operations are executed. In case of the read experiments, each run performs

exactly the same set of operations. Before each experiment is conducted all databases

are initially loaded with content from the generator tool used for TPC-H with SF 1. For

MonetDB an extra warm-up run is necessary because of its caching behavior. It decides

based on the query whether to create caches or not. In return, not all warm-up runs enforce

the creation of caches. In this additional run 1,000,000 rows are selected using the primary

key. The benchmarks are executed either for an increasing amount of concurrent clients

using one single operation per request or for an increasing batch size using only one client.

3.1 Setting the Baseline

Before we can start with the full-fledged experiments that measure end-to-end runtimes, let

us begin with a simple experiment, that focuses purely on the overhead of the communication

with the system. Most importantly, we want to identify wether the benchmark tool itself

can be part of the overhead. For the relational systems, we simply fire a SELECT 1 query

in SQL. For Redis, we can perform an echo operation. Unfortunately, this is not possible

An Experimental Analysis of Different Key-Value Stores and Relational Databases 355

in Aerospike, where we fire the keyExists() function to test for a non existing key in

an empty database. Additionally, to prove whether the measured performance is bounded

by the benchmark at all, the same experiment is made without communicating with any

database, denoted as NO-DB, where simply a counter is increased while the rest remains

exactly the same.

0 5 10 15 20

200 000

400 000

600 000

Clients

P
er

fo
rm

an
ce

[Q
/
se

c]

PostgreSQL MonetDB

HyPer Aerospike

Redis NO-DB

YCSB CUSTOM

Fig. 1: Echo Performance. 50,000 echo requests are performed using multiple clients. YCSB are the

results from the YCSB tool and CUSTOM are the results from our custom benchmark.

First, let us have a look on the results for YCSB in Figure 1. NO-DB shows the maximal

throughput which YCSB is able to achieve. The results of both benchmark tools for

PostgreSQL, Redis, and Aerospike show that their performance in YCSB is bounded by

the benchmark itself. MonetDB and HyPer perform in both benchmarks equally. Thus,

their throughput is obviously bounded by the database. As a consequence, in following

experiments we are not going to take YCSB into account and consider our CUSTOM

benchmark as a more meaningful alternative.

3.2 Write Experiments

In this category we start by investigating how well insertion and deletion from orders and

lineitem is performed. New rows are created using the generator tool from TPC-H and

adjusted to fit into our modified schema. Aerospike and MonetDB underlie some restrictions

which prevent them to be part in all experiments in this section. Aerospike is not capable of

batched insert or delete operations and is used only in experiments with multiple clients.

Since, MonetDB uses optimistic concurrency control (OCC) for transaction management

it is used only in the batched experiments because OCC prevents concurrent modifying

transactions.

A side note on all batch experiments: the results in Figure 2(b) show two measured values

for the batch size of one: an unbatched variant of a single operation and a batched variant

containing a single operation. This is necessary because batching operations together into

one transaction comes at a cost, which is the difference between both measured points. The

higher value is mostly the unbatched variant, with HyPer as the only exception. The results in

Figure 2(a) and 2(c) show a similar outcome as the echo experiment in the previous section.

Aerospike and PostgreSQL scale along with the amount of clients. In contrast to Aerospike,

PostgreSQL does not scale as good as in the echo experiment. The most likely reason is the

356 David Gembalczyk, Felix Martin Schuhknecht, Jens Dittrich

0 5 10 15 20
0

100 000

200 000

300 000

Clients

P
er

fo
rm

an
ce

[o
p
s/

se
c]

(a) Insert, multiple clients, no batching.

1 10 100 1 000
0

20 000

40 000

60 000

80 000

Batch Size

P
er

fo
rm

an
ce

[o
p
s/

se
c]

(b) Insert, single client, different batch sizes.

0 5 10 15 20
0

100 000

200 000

300 000

400 000

Clients

P
er

fo
rm

an
ce

[o
p
s/

se
c]

(c) Delete, multiple clients, no batching.

1 10 100 1 000
0

200 000

400 000

600 000

Batch Size

P
er

fo
rm

an
ce

[o
p
s/

se
c]

(d) Delete, single client, different batch sizes.

PG-row PG-hstore PG-jsonb MonetDB HyPer

AS-simple Redis

Fig. 2: Write Performance. In total 50,000 rows are inserted/deleted from orders and lineitem.

additional locking mechanism to provide concurrent transactions. These costs are hidden

for Aerospike because they are already accounted when checking whether a record exists

and thus the echo performance is reduced. Although multiple clients are used, HyPer has

a bad performance. The reasons are its view on concurrent transactions in addition to the

overhead induced by query compilation. As we never introduced a vertical partitioning to

the schema, all transactions are serialized. A look at the CPU usage during the benchmark

hardens this point as only one core is used. However, the batched experiments give us a

notion of how fast compiled queries are. Among all relational databases HyPer shows the

best performance improvement along increased batch sizes. From the results in 2(b), we

derive two very interesting points. First, PG-hstore and PG-jsonb are faster than PG-row.

While both key-value variants have to send and store additional information about the

structure they need just two integrity checks: are primary keys integers and are the values of

type Hstore or JSONB. Second, the single-threaded Redis instance competes with up to

six processes forked by PostgreSQL. Furthermore, for a single client it is also faster than

Aerospike. This may have two reasons: a faster storage-layer due to its focus on non-nested

data structures or it utilizes its single thread better than Aerospike or PostgreSQL because

An Experimental Analysis of Different Key-Value Stores and Relational Databases 357

it does not have to lock the data against other threads. Furthermore, Redis has a downward

spike in both batched experiments. This may be the result of the transaction mechanism

which is used for batching the requests. Similar to transactions in relational databases,

Redis stores all operations until an EXEC command is received. Upon this command, all

previously stored commands are executed. Delete operations have a much smaller size and

the spike apears later. Thus, this downward spike may indicate that the buffer which stores

the commands is enlarged.

3.3 Read Experiments

To evaluate the read performance, let us now first look at simple selects on the primary key

column. With this set of experiments we conclude the basic OLTP request types. In this

section, we use all tables of our schema, that contain at least as many rows as the batch size.

Furthermore, no key occurs twice within one batched request. Let us first look at Figure 3(a),

where we vary the number of clients and avoid batching. We can see that Aerospike scales

the best with the number of clients as one would expect from a multi-threaded key-value store

under a concurrent OLTP workload. In contrast to that, Redis serializes the requests from

all clients and thus saturates quickly. PostgreSQL scales less effectively than Aerospike but

still improves till 20 clients. On the other end of the performance lie MonetDB and HyPer,

which suffer from their focus on OLAP and expensive query compilations. In Figure 3(b), we

vary the batch size while limiting the evaluation on a single client. Interestingly, all systems

monotonically gain performance with an increase of the batch size except of Aerospike and

Redis. Especially Aerospike suffer under the batch sizes 500 and 1000, probably due to a

suboptimal distribution to the executing threads. Furthermore, we can also observe that

PG-jsonb is slower than PG-row and PG-hstore with larger batches: PG-jsonb has to send

significantly more meta-data.

0 5 10 15 20
0

100 000

200 000

300 000

400 000

Clients

P
er

fo
rm

an
ce

[o
p
s/

se
c]

(a) Multiple clients, no batching.

1 10 100 1 000
0

50 000

100 000

150 000

Batch Size

P
er

fo
rm

an
ce

[o
p
s/

se
c]

(b) Single client, different batch sizes.

PG-row PG-hstore PG-jsonb MonetDB

HyPer AS-simple Redis

Fig. 3: Select Performance. In total 50,000 rows are selected from all tables.

Let us now focus on secondary indexes. These are very important to answer point-queries

or in join operations. Thus, we will now inspect how the systems behave when using their

respective secondary index structures. The larger the table the more impact an index has

on the query; therefore, we employ only the three largest tables lineitem, orders, and

358 David Gembalczyk, Felix Martin Schuhknecht, Jens Dittrich

partsupp. l_orders, o_custkey, and ps_partkey are used as indexed columns. We

use three different query types, shown in Listing 1, that either retrieve all selected rows

(SELECT), count all selected rows (COUNT), or aggregate the maximum over the selected

rows of an unindexed attribute (MAX). In the experiments of Figure 4, we vary the size of

the selected range, deactivate batching, and use eight concurrent client threads. Redis does

not have secondary indexes but its developers provide an official workaround to simulate

them with build-in functions. The SQL statements (see Listing 1) can be used instantly

for all relational databases whereas for Aerospike and Redis these statements need to be

translated. For instance, to count and to aggregate the elements, Aerospike needs to apply a

stream UDF.

/ / R e t r i e v e / Count / Aggrega t e r e c o r d s

SELECT [∗ | COUNT(∗) | MAX([p s _ s u p p l y c o s t | o _ t o t a l p r i c e | l _ d i s c o u n t])] FROM

[p a r t s u p p | o r d e r s | l i n e i t e m]

WHERE [p s _ p a r t k e y | o_cu s t k ey | l _ o r d e r k e y] = someValue

/ / Example how d i f f e r e n t s e l e c t i v i t i e s a r e r e a l i z e d u s i ng a r ange que ry

SELECT ∗ FROM

[p a r t s u p p | o r d e r s | l i n e i t e m]

WHERE s t a r t <= [p s _ p a r t k e y | o_cu s t k ey | l _ o r d e r k e y]

AND [p s _ p a r t k e y | o_cu s t k ey | l _ o r d e r k e y] <= end

List. 1: All three queries to measure index performance in this experiment.

As we can see in Figure 4, for all range sizes the performance of MonetDB is almost

stable, as no index is used by the system to answer the queries. Only at a range size of one,

MonetDB performs better as it can test for equality. A similarly stable performance can be

observed for HyPer. We can also see that PostgreSQL obviously has the best support for

secondary indexes, with PG-hstore and PG-jsonb having a better performance than PG-row.

This is caused by PostgreSQL building an additional bitmap index based on the already

existing indexes. For Aerospike we are able to make two conclusions: first, stream UDF’s

have slow start times, because SELECT is faster than MAX() and COUNT(*) for the range

size of one, although these two return much less data. Second, Aerospike seems to have

performance issues with range queries. With larger ranges, Aerospike becomes much slower

for all three queries than PG-row with SELECT, which contradicts the results of the simple

selects. The simulated index for Redis shows a moderate performance.

1 10 100 1 000
0

20 000

40 000

60 000

80 000

100 000

Range Size

P
er

fo
rm

an
ce

[o
p
s/

se
c]

PG-row PG-hstore

PG-jsonb MonetDB

HyPer AS-simple

Redis SELECT

COUNT(*) MAX()

Fig. 4: Index Performance. In total 50,000 queries are performed using an indexed column as filter.

The selectivity is represented as range of valid values.

An Experimental Analysis of Different Key-Value Stores and Relational Databases 359

3.4 Analytic Query Experiments

In this final category we focus on OLAP and use the queries provided by TPC-H to compare

the databases in this area. Due to the lack of a join operation in Aerospike, we focus on the

OLAP queries which use only one table (Q01 and Q06). In the experiments, we perform

five runs with one OLAP query per run and take the average. Furthermore, we switch from

the custom benchmark tool to the interface applications provided with the databases to

simplify the execution, as no batching is needed anymore. For PG-hstore and PG-jsonb we

map the columnar values to the attributes stored in the Hstore and JSONB values. For Redis

and Aerospike, the declarative SQL statements are translated into procedural UDFs.

Q01 Q06

0.01

0.1

1

10

100

TPC-H Query

D
u
ra

ti
o
n
[s

ec
]

PG-row PG-hstore

PG-jsonb MonetDB

HyPer AS-simple

Redis

Fig. 5: Duration of Singletable TPC-H queries.

Let us inspect the results in Figure 5. The varying run-times for all PostgreSQL variants in

Q01 present again evidence that these have very different access times to a single attribute.

The most expensive access accounts for JSONB values. In all cases, the whole table is

scanned with corresponding filters. Unlike in Section 3.3, this time PostgreSQL decides

to perform a scan on the table in any case. Redis shows the longest run-time due to slow

UDF’s, similar to Section 3.3. In contrast, Aerospike shows a much better run-time which is

even comparable to PG-hstore. This outcome is contrary to the findings in Section 3.3 where

Aerospike is much slower than PG-hstore particularly for larger ranges. Thus, Aerospike is

faster at scanning a set than querying an index. The best results yield HyPer and MonetDB.

Although they use different approaches, both perform almost equally. Still, compiling the

query takes some time but in the return a much faster execution is achieved because of

data-centric code. Especially, MonetDB proves that its optimization towards OLAP and its

custom assembly language are as efficient as query compilation.

4 Conclusion

This paper constitutes a performance study using various benchmarks4. Test subjects

were Aerospike and Redis as key-value stores and PostgreSQL, MonetDB, and HyPer as

relational databases. Additionally, PostgreSQL is used to simulate the behavior of Aerospike

and Redis using the data types Hstore and JSONB. Both, HyPer and MonetDB are very

4 Due to the page limitations, we reduced our evaluation to the presented content. The interested reader can

additionally find the evaluation of deletes, joins, and multi-table TPC-H queries on our website.

360 David Gembalczyk, Felix Martin Schuhknecht, Jens Dittrich

efficient with OLAP queries and obtain run-times in the range of milliseconds for TPC-H

queries. In return, both are not able to handle OLTP requests to a satisfying extent. For

HyPer, this is a side effect of relying on query compilation. Without support for prepared

statements its performance is bounded by the compilation for short requests. In contrast,

the low OLTP performance by MonetDB is the result of architectural decisions. In favor

of OLAP performance, the OLTP throughput is neglected. The highest OLTP throughput

achieves Aerospike by utilizing all threads which are provided by the system. At the same

time, the threads are used inefficiently. The reason is the locking mechanism, which is

necessary to manage concurrent access to the records. Furthermore, Aerospike performed

almost as good as PostgreSQL when processing OLAP requests. Due to its single-threaded

design Redis has the best performance per thread. However, the downside is its inability to

scale automatically along with multiple clients. Instead, the user needs to decide whether

multiple Redis instances are needed or not. PostgreSQL has proven to be an all-round

database throughout all tested candidates. It has the best OLAP performance behind both

column-stores and the best OLTP performance behind Aerospike. Additionally, due to the

Hstore and JSONB data types it can be used as key-value store. With the help of PostgreSQL

we show that key-value stores have a small advantage towards OLTP requests, as schema-free

databases key-value stores do not make any assumptions on the content of a value and can

omit integrity checks.

Summing it up, key-value stores are particularly recommended in situations with high

frequent OLTP and are not yet ready to perform well under OLAP workloads. For workloads

with almost only OLAP, specialized databases are suggested. HyPer and MonetDB are

just two possible candidates for such workloads. PostgreSQL provides a good trade off for

mixed workloads.

References

[AMH08] Abadi, D. J.; Madden, S. R.; Hachem, N.: Column-stores vs. Row-stores: How Different
Are They Really? SIGMOD ’08, ACM, New York, NY, USA, pp. 967–980, 2008.

[Co70] Codd, E. F.: A Relational Model of Data for Large Shared Data Banks. Commun. ACM,
13(6):377–387, June 1970.

[Co10] Cooper, B. F.; Silberstein, A.; Tam, E.; Ramakrishnan, R.; Sears, R.: Benchmarking Cloud
Serving Systems with YCSB. SoCC ’10, ACM, New York, NY, USA, pp. 143–154, 2010.

[Co14] TPC Benchmark H (Decision Support) Standard Specification Revision 2.17.1.

[Fl12] Floratou, A.; Teletia, N.; DeWitt, D. J.; Patel, J. M.; Zhang, D.: Can the Elephants Handle
the NoSQL Onslaught? Proc. VLDB Endow., 5(12):1712–1723, August 2012.

[Kl15] Klein, J.; Gorton, I.; Ernst, N. et al.: Performance Evaluation of NoSQL Databases: A
Case Study. PABS ’15, ACM, New York, NY, USA, pp. 5–10, 2015.

[KN10] Kemper, A.; Neumann, T.: , HyPer - Hybrid OLTP&OLAP High Performance Database
System, 2010.

[PPV13] Parker, Z.; Poe, S.; Vrbsky, S. V.: Comparing NoSQL MongoDB to an SQL DB. ACMSE
’13, ACM, New York, NY, USA, pp. 5:1–5:6, 2013.

[SF12] Sadalage, P. J.; Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World of
Polyglot Persistence. Addison-Wesley Professional, 1st edition, 2012.

