
B. Mitschang et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2017),

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 331

Generating Data from Highly Flexible and Individual Process

Settings through a Game-based Experimentation Service

Georg Kaes1, Stefanie Rinderle-Ma2

Abstract: The ability to adapt process instances to changing requirements has long been recognized as
a fundamental research topic. While in some settings, process Ćexibility is only required in exceptional
situations, in other settings it is the key component which drives the process design. Examples can
be found in multiple domains, including the nursing domain, where each patient requires his own,
individual therapy process which may change on a regular basis. In this paper, such Ćexible and
individual process settings (FIPS) are analyzed and the basic building blocks are deĄned based on
expert interviews and relevant literature. The building blocks are then mapped onto a game-based
experimentation service which ofers a simulation and evaluation environment for FIPS. The data
generated in this game are evaluated by a comparison with data from a real world FIPS.

Keywords: process Ćexibility, process logs, process mining, experimentation service

1 Introduction

Process Ćexibility is fundamental to many domains and thus a well researched topic [RW12].

Depending on the process setting there are diferent degrees of Ćexibility [Sc08]. In some

settings, multiple process instances follow the same basic schema which has to be adapted

if some exceptional situation occurs. In other cases, each process instance is diferent by

design. Take the therapy process of a patient in a nursing home as an example (cf. [Ka14]).

For each patient there exists one long-running process instance executing the therapy steps

speciĄc to this patient. There is no common schema, but each instance develops based on

ad hoc adaptations. Whenever a patient shows new symptoms, the nurse has to adapt the

therapy process accordingly. Such settings are referred to by highly Flexible and Individual

Process Settings (FIPS).

FIPS can be found in many domains [Ka14]. Examples range from regular customer care

in a hotel setting, over the medical domain, to schools for children with special needs.

In FIPS, end users are regularly supposed to decide on, specify, and conduct adaptations

[We09]. Hence, system support becomes crucial [KR15]. In the nursing domain, for example,

nurses could be supported in Ąnding the best adaptation for the current patientŠs therapy

process based on his current symptoms and medical history [Ka14]. Existing approaches on

user support for process Ćexibility [Aa09; Gü08; KR15; We09] exploit information about

previous process executions and adaptations, typically captured in process execution and

1 University of Vienna, Faculty of Computer Science, Waehringerstrasse 29, 1090 Vienna, Austria,

georg.kaes@univie.ac.at
2 University of Vienna, Faculty of Computer Science, Waehringerstrasse 29, 1090 Vienna, Austria,

stefanie.rinderle-ma@univie.ac.at

georg.kaes@univie.ac.at
stefanie.rinderle-ma@univie.ac.at


332 Georg Kaes, Stefanie Rinderle-Ma

change logs. The goal is to learn from previously applied changes and to utilize additional

knowledge such as context information, e.g., patient age and medical history, to identify the

best adaption for the situation at hand.

Providing system-based user support requires to understand building blocks that are

characteristic to FIPS independent of the particular domain. In [Ka14] requirements for

highly Ćexible process settings have been collected from four diferent application domains,

i.e., subject data, environmental data, goals, trigger conditions, and process fragments. The

Ąrst question is whether these requirements can be generalized as building blocks for FIPS.

A follow-up question is whether the building blocks can be mapped and integrated into

an experimentation service. The goal of such a service would be to enable the simulation

of FIPS independent of any application domain. Such an experimentation service would

enable the simulation of FIPS with a holistic view on data. It would also enable the creation

of process execution and change logs in case no real-world logs are available due to, for

example, legal or privacy reasons.

Overall, this paper tackles the following research questions:

Q1 Which building blocks are common to FIPS (following up on [Ka14])?

Q2 How to reĆect FIPS requirements in a game-based experimentation service?

Q3 Is a game-based design suitable for generating the data common to a FIPS?

The research questions are tackled by elaborating a service-based design of a tower defense

game that simulates FIPS. In a tower defense game, players defend towers from incoming

enemies. To do this, players can select from multiple defense systems which can be placed

at the towers. These defenses then Ąght the incoming enemies. At an abstract level, players

conduct comparable actions to nurses in a nursing home: They plan individual process

adaptions in order to deal with a certain problem. In the nursing home, these problems are

the symptoms a patient shows; in the tower defense game, they are the incoming enemies.

While playing the game, process change and execution logs and related data for analyzing

the logs are logged in a data repository. Additionally, the tower defense game itself provides

a setting which can be used to evaluate approaches which support users in the sequel.

The paper is structured as follows: In Section 2, building blocks and concepts of a FIPS are

analyzed based on expert interviews and explained including data sources and components

which have to be represented in the tower defense game (→ Q1). Section 3 describes the

design of the service-based tower defense game: Here, we present the mapping of FIPS

requirements, data sources, and components to the concepts of the tower defense game (→

Q2). Further on, the service-based architecture of the game and details of the generated

log Ąles are presented. The feasibility of the data generated by the game is evaluated by

comparing the generated data elements with data generated by a real world FIPS (→ Q2,

Q3). Finally, Section 5 discusses related work and Section 6 concludes the paper.



Generating Data from Highly Flexible and Individual Process Settings 333

2 Generalization of Highly Flexible and Individual Process Settings

FIPS can be found in many domains. As shown in previous work [Ka14], the basic properties

of such settings are quite similar. Following up on [Ka14] and considering further work on

Ćexible processes [RW12; We09], we conducted several expert interviews with practitioners

from diferent domains which we identiĄed as possible FIPS. Our goal was to enhance the

basic building blocks we found in [Ka14] and to identify basic properties of FIPS. In this

section, we Ąrst present the resulting building blocks (Section 2.1), followed by the outcome

of the expert interviews and individual properties of FIPS (Section 2.2).

2.1 FIPS Building Blocks

Based on related work [RW12; We09] and the results from the expert interviews, the

following requirements are considered to build the basis for a general FIPS representation

(→ Q1). These building blocks are domain independent abstractions from general concepts

such as data sources or procedures which exist in speciĄc domains which can be seen as

FIPS. We found implementations of these concepts in any domain we investigated which

we considered as a FIPS. The rest of the section deĄnes these building blocks and gives

examples from the nursing domain. Following, the domains will be described in detail and

domain speciĄc implementations of these concepts will be presented.

• Subjects deĄne the individual persons, objects or concepts that are subject to the

process execution [Ka14]. In the nursing domain, these individuals are the patients

for which the process instance exists and is being adapted.

• Process Instances [RW12] capture and execute the process logic for a subject. In

FIPS, instances typically run for a long time and are afected by process change

operations whenever necessary. In the nursing domain, the process instances contain

the therapy tasks which have to be executed in order to make the patient feel good or

better.

• Organizational Units reĆect the organizational perspective of a process. They can

be used to deĄne relationships between actors, deĄne skills and possible actions for

those units etc. [RW12]. In the nursing domain, the organizational units are the nurses,

doctors, assistant nurses, and all other employees of the nursing home which are in

some way related to a patientŠs therapy plan.

• The Environment [Ka14] of a FIPS comprises all data that is related to the subject,

but not directly incorporated by the subject, for example, the limited resources which

are required to execute the tasks related to the subject. In the nursing domain, the

environment would be the nursing home.

• Process Fragments are parts of a process which get inserted into, deleted from, or

moved during a process change operation [Ka14; RW12]. In the nursing domain,

these process fragments refer to therapies which are added to or removed from a

patientŠs therapy plan.



334 Georg Kaes, Stefanie Rinderle-Ma

• Problem List: For each fragment a set of conditions where the fragment should not

be used can be deĄned. In [We09], such a problem list item has been introduced in

an example from a medical domain, where a certain adaptation could not be made

because the patient has a cardiatric pacemaker.

• Bonus List: In contrast to the problem list, the bonus list for each fragment describes

situations where the fragment is known to perform well. This building block has been

identiĄed during the expert interviews. In the nursing domain, this bonus list contains

details about the patient which give a hint that a certain therapy may perform well.

• Triggers: In [RW12], the necessity of ad hoc modiĄcations to a process instance is

deĄned by exceptions which have not been thought of when designing the process

model. Whenever such an exception occurs, the process instance has to be changed in

order to deal with this exception. In FIPS, such events occur on a regular basis, thus

we argue that the term exception does not Ąt in this context. Since these situations

trigger a change operation, we will use the term trigger instead. In the nursing domain,

symptoms are the triggers. Whenever a patient shows new symptoms, something has

to be changed in his therapy process.

• Positive Goals [KK97]: There are always reasons which justify a process change.

These reasons can be deĄned as goals which should be reached by executing the tasks

which have been inserted, or not executing the tasks which have been removed from

the process instance. In the nursing domain, positive goals can be to make the patient

feel better, more conĄdent, or at least to stabilize him in his current condition.

• Negative Goals [KK97]: Process changes can also be conducted in order to avoid

certain situations and hence they address negative goals. In the nursing domain,

examples include the deterioration of the patientŠs condition or even the death of the

patient.

2.2 Expert Interviews

We conducted interviews with experts from diferent domains in order to identify the

basic building blocks of a FIPS presented in the last section. Highly individual settings

can be considered as FIPS if they require some kind of process to be adapted in order to

react properly to certain situations. In [Ka14] the basic high-level components for FIPS

were analyzed for four domains, i.e. manufacturing, software development, hotel and event

management and care planning. For evaluating the building blocks and general properties

of a FIPS, we chose software development and hotel and event management as domains

already evaluated in [Ka14]. In order to emphasize the diversity of settings where FIPS

plays a key role, we decided to evaluate two additional domains, namely a special needs

school and the PhD program of a university.

The interviews started with the experts describing the domain they are working in. We asked

them for examples where they had to deal with special individual situations, and what they

could personally learn from these situations. In the following, we presented them the basic

idea of FIPS based on the nursing scenario and discussed possible commonalities between



Generating Data from Highly Flexible and Individual Process Settings 335

their domain and the nursing domain as a FIPS. We chose the nursing domain as a reference,

since it is easy to empathize with, even if the interviewed person is no expert in this domain.

Based on this information, we identiĄed in cooperation with the domain experts the basic

building blocks which have been presented in the last section. The exact allocation of each

building block for each evaluated domain can be found on our project website3.

2.2.1 Expert Interview: Software Sales and Support

We interviewed two sales managers from mesonic, an austrian company which develops

enterprise resource planning (ERP) and customer relationship management (CRM) software

for small and medium enterprises. The contact to the customers works to a big part over a

network of retailers which are in geographical vicinity of their customers. The support of

mesonic mainly works over an internal system where problems with the software itself (e.g.,

bug reports), individual wishes, and additional requirements from certain customers and

retailers are gathered. Depending on the information the companyŠs support department has

about the case at hand, diferent measures are taken: If a bug is identiĄed (which is already

known or reported by many other customers), it will be discussed in the next developer

meeting, where further steps will be deĄned. Depending on its priority, it may be solved

right away, or as soon as resources are free. A customerŠs whish for an additional feature

may be implemented in a future version of the product, depending on the workload of the

developers, the usefulness to other customers, and several other parameters.

Discussion: After introducing the nursing domain as a point of reference, we talked

about commonalities between the software sales and support and the nursing domain on

an abstract level. It became clear that commonalities between the individual problems of

a patient in the nursing home and the problem description in a support case exist indeed:

In both scenarios, there is a problem which has to be solved. In order to identify the best

course of action (i.e. the best process fragment), parameters from the case itself as well as

from the environment are analyzed. While in the nursing home the circumstances of the

patientŠs problem are analyzed, including his medical history and common diseases, in the

software domain the circumstances of the support case are identiĄed, including the targeted

version of the software and other, similar reported problems. When the problem itself is

identiĄed and the goals are clear, the next steps are planned. In the software domain these

steps include work to be done by software developers, the support and sales departments.

After these steps have been conducted the person in charge of the case evaluates whether

the goals have been reached or not.

2.2.2 Expert Interview: Hotel Management and Guest Care

Hotel management also deals with individual subjects (i.e., guests) having speciĄc require-

ments. We interviewed two receptionists from a local hotel and seminar location which

3 http://cs.univie.ac.at/project/apes



336 Georg Kaes, Stefanie Rinderle-Ma

focuses on business as well as leisure guests. The guest proĄles range from typical seminar

groups with a trainer and multiple employees or managers, to couples or families who want

to spend some days in a hotel. Obviously, these groups have diferent requirements for the

location: While for the leisure guests, for example, outdoor activities or wellness ofers

have a higher priority, for the business guest a well-equipped seminar location or a smooth

procedure of their workshop is more important. Hence, the hotel has to provide diferent

ofers depending on the guestsŠ proĄles and demands.

Discussion: Each interaction with a guest can be seen as part of a FIPS. Depending on

the guest proĄle and the current ofers of the hotel and seminar location, diferent things can

be ofered to the guests. For example, if a guest is known to be quite exhausting, he will be

treated with special care in order to keep him at bay. A seminar group who is known to have

problems with technical equipment will receive special support right from the start. This

behavior again shows commonalities to the nursing or the software development domain:

First, the situation and the problem are identiĄed, then, based on knowledge about the

subject at hand and what has worked in a similar situation before, the best course of action

is identiĄed.

2.2.3 Expert Interview: Special Needs School

We interviewed two teachers from a special needs school who teach children with special

needs from ages 10 to 15. The special needs range from language issues, over physical up

to psychical conditions of various kinds. Depending on the speciĄc needs of the children

diferent teaching concepts have to be chosen. While there exists a general plan for the

school year as a whole, it has to be presented to each child in a diferent way. Of course,

due to resource limitations, this is not always possible. Hence, the teachers are required to

balance the needs of all children.

Whenever a child shows some ad hoc needs, for example his or her concentration is going

down, the teachers have to Ąnd the root causes for this symptom, and Ąnd a way to deal

with it. Depending on the child and his or her needs, diferent causes can lead to the same

symptoms. For example, learning problems may indicate family or physical issues. It is

the teacherŠs job to Ąnd countermeasures which will help the child to feel better and more

conĄdent again. These countermeasures difer from child to child, and a great deal of

experience is required to Ąnd a the best one.

Discussion: In this scenario, the parallels to the nursing domain and to FIPS in general

were obvious: Just as patients who have their individual problems, children with special

needs also require attention for their individual needs. If a child shows some symptoms (as

described above) it is the teacherŠs job to identify the problem and to Ąnd an efective way

of dealing with it. If the teacher is experienced in his Ąeld of work, he had similar cases

before, and uses this knowledge in order to Ąnd the best way to help the child.



Generating Data from Highly Flexible and Individual Process Settings 337

2.2.4 Expert Interview: Doctoral Program Supervision

We interviewed two participants in the doctoral program of the University of Vienna. During

the interviews it became clear that the doctoral program can also be seen as a FIPS. While all

students have their individual project, there are some common characteristics between the

diferent students and projects which can be utilized to analyze problems and Ąnd solutions.

The basic research plan is typically laid out during the Ąrst year of the PhD studies, but it

has to be adapted many times during the course of the work, whenever issues or new ideas

come up. For example, if a student realizes he or she requires some special equipment which

is hard to get, he or she may have to adapt his or her work plan. There might be diferent

solutions for the same challenge. For example, if a certain kind of technical equipment,

like a special microscope, is required to complete a part of the work, for some projects it

may be it easier to adapt the work in a way that this equipment is no longer needed. For

other projects, the students may have contacts to institutions which can provide such a

microscope.

Discussion: During the interviews it became clear that the doctoral program can also be

seen as a FIPS. In contrast to other domains however, each student only has one individual

project (i.e. one subject in terms of a FIPS) he is working with. While in the other three

domains people were identifying and handling problems for several diferent subjects (e.g.

guests, support cases, children) each student only deals with one subject.

Conclusion: Altogether 8 experts from 4 diferent domains were interviewed. All of these

experts were able to identify some commonalities between the domains they are working

in, and a FIPS. Together with the domain experts, we identiĄed the basic building blocks

of a FIPS which we discussed in the last section. For each of the four domains described

above, these building blocks have been discussed in detail and allocated with data from

each domain.

In addition to the building blocks which are based on related work, and the bonus list

identiĄed during the expert interviews, the following special properties of a FIPS were

encountered while analyzing these basic building blocks with the domain experts (c.f.

Section 2.2.) The following list deĄnes these properties:

• Individualism: Each subject, and each situation where a trigger occurs, has its very

individual properties. For example, in the software development domain, each support

case has its own set of data elements which describe the situation and the case itself.

• Limitation of available resources: In each setting, the resources which can be used

to solve the problematic situation are limited. This usually leads to a prioritization of

the problems: For those which are more important, more resources are spent. In the

software domain, a crucial support case naturally receives more resources in order to

solve it. On the other hand, in the special needs school setting, such a prioritization is

not that simple: Every child needs attention, and the available resources have to be

split up in a good way.



338 Georg Kaes, Stefanie Rinderle-Ma

• Ambiguity of triggers: The same trigger does not have to mean that the same

problem has to be solved: In the special needs school, two children can show the

same symptoms (e.g. they cannot concentrate any more), but the reasons behind those

symptoms can be very diferent.

• Diversity of possible solutions: If we know what the actual problem is, still multiple

solutions are possible. It highly depends on the current situation which one is chosen,

i.e. the workload of the available resources, the history of the individual etc. In the

special needs school it depends to a big part on the condition of the child which

solutions can be chosen in order to make him or her feel better.

3 Designing a Tower Defense Game as an Experimentation Service for

FIPS

The main goal of this work is to design a game-based experimentation service that reĆects the

building blocks introduced in Section 2 and enables the simulation of FIPS in a generalized

way (→ Q2, Q3). SpeciĄcally, the service enables the collection of data that is essential for

user support features [Gü08; KR15; We09], i.e., process execution and change logs.

The following section Ąrst discusses why we decided to implement a tower defense game as

an experimentation service for FIPS. Following, we introduce the basic ideas and gameplay.

After that it is explained how this gameplay relates to FIPS building blocks and procedures.

Finally, the basic architecture are shown and we introduce the data players generate while

playing the game.

3.1 Using a Tower Defense Game as an Experimentation Service

Tower defense games (cf. e.g. [Av11]) are strategy games where the player has to defend a

set of towers. Usually, the player has some defense systems to choose from (build a cannon,

train some soldiers, etc.) and sends them to the towers. In certain intervals, waves of enemies

attack these towers and try to destroy them. By placing his defense systems, the player tries

to counter the enemy forces and avoid his towers from being destroyed.

We chose a tower defense game as a basis for our evaluation service for several reasons: First,

tower defense games are a well known type of game, thus, the basic game mechanics will be

quite easy to understand for new players. Second, tower defense games can be round based.

This means that the player can take as much time as he requires to make his decisions. This

stands in contrast to real-time strategy games, where the player has to make his decisions

very fast in order to keep up with the game. A very popular representative of a round based

strategy game is chess: Here, both players can usually take a long time to decide what to do

next. Since the goal of our game is to represent a FIPS, we decided to implement a round

based strategy game: As in a real FIPS, where the responsible actors have to plan their next

steps, the player should have enough time to plan what to do next. Third, a tower defense

game does not depend on a real domain: For most FIPS, the person responsible for deciding



Generating Data from Highly Flexible and Individual Process Settings 339

what to do next has to be a domain expert. Depending on the domain, it can take a long

time to acquire the required knowledge. In a domain independent setting such as a tower

defense game, no long training is required: Of course, it takes some time for new players to

know exactly when to use which defense system, but in contrast to learning the details of

nursing science, this can be done very fast. Fourth, the domain independence also leads

to the advantage that anyone interested can download and play our game. Thus, we have a

broad base of possible players who generate the data we can use for further evaluation.

Aside from the players who actually play the game, our targeted audience are scientists: First,

the generated data can be used to develop and evaluate algorithms work with FIPS data.

Second, using our game as an experimentation service, scientists can evaluate approaches

to support users in FIPS domain independently. Imagine a service which aims at supporting

FIPS users. Our game service could be utilized to compare two groups of FIPS users: Those

who receive some kind of support when making decisions, and those who do not receive

any support. If the supported group outperforms the group who did not receive support, it

can be a hint that the support service might be useful. Due to the domain independence of

our game service, a broad range of users can be included in such an experiment.

3.2 Gameplay

The idea of the game to be developed4 is that the player slips into the role of a commander

who has to conquer and defend villages on an island. (The villages are equivalent to the

towers in the deĄnition given above.) Each of these villages has its own set of parameters

which make them individual. While some villages are closer to the sea, others are in the

middle of the woods, and others close to mountains. These villages are attacked by enemy

armies in varying intervals. Who these armies are and how they attack largely depends on

the parameters and the history of the villages. Some enemies will preferably attack villages

closer to the sea, while other enemies are more often seen in the woods and will preferably

plan their attacks there.

The game is round based, meaning that the player can take as much time for his decisions as

he needs. In the game each round is referred to as a day. In order to defend his villages, the

player can plan the defenses for the days to come. For each village, there exists exactly one

defense plan, which is implemented as a highly Ćexible and individual process instance.

In this process instance, all the actions which have to be carried out in order to defend the

village are deĄned. On each day, the same things happen:

1. New enemies show up at some of the villages.

2. The players defenses which are already in place (because they have been planned on

previous days) Ąght the enemies. If the enemy wins, the village loses population. If

the population reaches zero, the village is lost.

3. The player can plan new defenses for the following days for each of his villages.

4 Available at: http://cs.univie.ac.at/project/apes

http://cs.univie.ac.at/project/apes


340 Georg Kaes, Stefanie Rinderle-Ma

The enemy armies attack the villages over multiple days. On the Ąrst day, they usually show

up with light units who do not do much damage, but the player already notices them. The

longer the player does not react properly to the threat, the stronger the enemy army gets;

ultimately destroying the village.

The player controls four diferent buildings which cannot be attacked by an enemy directly.

Their sole purpose is to produce diferent parts relevant for defending the villages. All

buildings have a maximum number of items they can produce on a single day. If their

workload is fully used, they cannot produce any more on that day.

• Barracks: In the barracks, warriors of diferent types are trained. Among others, the

player can choose between a knight with a lot of health points, an archer who does

additional ranged damage, a mage who is a proĄcient spellcaster, and a soldier who

does melee damage.

• Forge: A warrior cannot do much without a weapon. In the forge, the player can

create multiple weapons such as swords, maces, axes, polearms, longbows etc. Each

of these weapons has individual properties, which make them more or less efective

depending on the warrior who carries them.

• Mage Tower: In the mage tower the player can create spells which are cast by the

defense units either to protect themselves or to harm their enemies.

• Alchemy Lab: In the alchemy lab the player can prepare oils which add an additional

efect to the weapons, and thus enhance their efectivity.

Each time a new enemy army shows up at a village for which the player has not planned any

defenses yet, he is supposed to do the following steps:

1. Choose Warriors: In a Ąrst step, the player chooses the warriors which make up his

army. These warriors are from one of three diferent races (human, elf and dwarf)

which all have advantages and disadvantages depending on the terrain of the village

and the enemy they are facing. The player can choose as many warriors as he wants

for each day, as long as the total number of warriors doesnŠt exceed the maximum

workload for the barracks for this day.

2. Prepare the Army: Before sending his army into battle, the player has to allocate

the weapons and spells to his warriors. Basically, all infantry can carry all kinds of

weapons and spells, but some will perform better with certain types of weapons than

others. For example, an archer will do more damage using a longbow than a mage

would do with the same weapon. Also, the efectiveness of the weapons depends

on the enemy the player is facing: Some weapons will perform good against certain

races, while others will not yield good results.

3. Execute Adaptation: When the player has set up his army for the following days,

he adapts the villageŠs process instance and sends his troops to the village which is

attacked.



Generating Data from Highly Flexible and Individual Process Settings 341

4. Evaluate Results: Each day, the enemy armies will Ąrst Ąght the defending armies

and - if they should destroy the defenses - inĆict a certain amount of damage to the

village by killing its population. If the villageŠs population reaches zero, the village is

lost for the remainder of the game. If the player has lost all his villages, the game is

over.

Fig. 1 shows the interface for choosing the troops and units for the defense of a village

called Merasus in the game. The player can select for each day which soldiers, weapons,

and defense systems he wants to use for his defense.

Magical Alignment: The spells and oils which can be created in the alchemy lab have

a certain magical alignment. There are three axes of magical alignment: Heat vs Cold,

Order vs Chaos, and Nature vs Corruption. Aside from the topology of a village, magical

alignment is the second concept which creates individual situations. Each time a spell of a

certain alignment is being cast at a village (either in order to defend or attack the village),

the alignment of this village shifts into the direction of the spellŠs alignment. For example,

if the player decides to send units who cast the spell Fireball to the battleĄeld (which is a

Heat spell), the magical alignment of said village will slowly change to the Heat alignment,

and away from the Cold alignment. Fig. 1 shows an overview over the magical alignment of

a village. The magical alignment of a village inĆuences how good or bad a spell or an oil of

a certain alignment works. If the Heat vs Cold alignment of a village is more on the heat

side, heat spells will generally be more efective, and cold spells wonŠt work as well. Spells

from the other alignments such as Nature, Corruption, Order or Chaos are not afected.

Magical alignment adds a great deal of individualism to a village.

Fig. 1: Choosing the defense mechanisms; framed in blue: magical alignment



342 Georg Kaes, Stefanie Rinderle-Ma

3.3 Mapping the Tower Defense Game Concepts to FIPS Buidling Blocks

In the following we describe how the gameplay is mapped onto FIPS.

• Subjects map to villages which difer according to their topology, magical alignment

and their history of enemy attacks.

• A process instance maps onto exactly one defense plan for each village which should

be adapted every time a new enemy army shows up.

• Organizational units map onto buildings under the playerŠs command that carry out

the steps deĄned in the process instance, namely the barracks, the forge, the alchemy

lab and the mage tower.

• An environment subsumes all resources and organizational units that have to be

shared for the execution of a certain process, for example, a nursing home. In the

tower defense game, all production buildings have to be shared for the set of villages

in the game. Hence, each game forms its own environment.

• Process fragments map onto the defense plans a player creates in order to stop the

enemy army. These defense plans / process fragments are inserted into the villageŠs

defense process instance.

• Problem list: For each fragment which can be inserted into a process instance there

exist some situations where it will not be optimal to execute its steps, for example if

the magical alignment of the village is contradicting the spellsŠ alignment.

• Bonus list: While some spells may be problematic in some situations, they may

perform well in others. If a villageŠs magical alignment is the same as the spells in a

fragment, carrying out the adaptation may yield more promising results.

• Triggers: Every time a new enemy army shows up at a village, its defense process

instance should be adapted.

• Positive goals: If the enemy is destroyed or chased away, the battle is won.

• Negative goals: If the village loses population or too many resources have been used,

the battle may not have found its optimal outcome.

• Individualism: Each village has its own, individual properies. This includes the

terrain, number of rivers, and magical alignment.

• Limitation of available resources: The buildings can only produce a limited amount

of soldiers and weapons to defeat the enemies each day. Their resources have to be

split up among all villages.

• Ambiguity of triggers: When a certain enemy shows up, it does not necessarily mean

that always the same kind of enemy will follow. For example, if some troll scouts show

up at a village, it does not always mean that the same troll army is about to attack.

The players will have to take a look at the villageŠs topological parameters, magical



Generating Data from Highly Flexible and Individual Process Settings 343

alignment and history to Ąnd out which army they may be facing. Additionally, the

player can send some scouts to Ąnd out more about the enemy.

• Diversity of possible solutions: Each enemy can be faced with many diverse defense

tactics. Choosing the optimal one depends on the current situation of the village and

the workload of the environment. Depending on the magical alignment of a village

and the enemy army, diferent solutions may perform better or worse.

3.4 Comparing the game’s adaption planning procedure to a real world FIPS

In Section 3.2 we presented the basic procedure of planning a defense strategy in our game.

We showed what a player has to do as soon as he Ąnds out that an enemy is attacking one of

his villages, and how his plan is executed. In this section, we show how this basic procedure

of planning a defense strategy for a certain village is similar to planning the upcoming

actions in a real world FIPS. Table 1 shows the mapping between planning upcoming actions

in a FIPS and in the game. This is shown by an example from the special needs school and

compared to the actions a player has to take in the game.

Tab. 1: Mapping between the Tower Defense Game and a real world FIPS

Step Special Needs School Game Setting

Step 1: Trigger
teacher notices problems with a stu-

dentŠs behavior

player sees attack of the village by

some enemy

Step 2: Adaptions
teacher plans what to do to help his

student

player plans the defenses for the next

days

Step 3: Execution teacher executes his plan
buildings send the planned units into

battle

Step 4: Evaluation
teacher evaluates whether the prob-

lems have been solved or not

player gets feedback about the result

of his defense

First, some problem has to be identiĄed. In the special needs school, this is done by the

teacher: Whenever he discovers some problems with one of his students, he has to do

something about it. In our game, this is implemented as the arrival of a new army: The

player knows he has to plan some kind of defense in order to defeat it. Following this initial

analysis, some adaptions have to be planned: The teacher has to prepare some kind of

support for the child, and the player has to plan his defense strategy. Third, the plans are

executed, followed by the evaluation: In the special needs school, the teacher has to Ąnd

out whether his plan has worked and his studentŠs problems are solved or not. In the game

setting, the player immediately sees whether the enemy has been defeated or not.

3.5 Service Based Architecture

The game architecture shown in Fig. 2 consists of several independent services which

interact via RESTful interfaces. It consists of a game server, which provides the calculations

for the Ąghts and when which enemy army shows up where, a process engine which manages



344 Georg Kaes, Stefanie Rinderle-Ma

the defense process instances for the villages, a logging service which logs all information

into the data repositories and a game interface. In the following, we will describe each

service in detail.

Logging
Unity

Interface

Game Server

Process 
Change Log

<<data repository>><<data repository>>

General 
Game Log

<<data repository>>

Process 
Execution Log

Game State

<<data repository>>

Data Repositories

CPEE
Defense Plan

Processes

Process Engine

<<process instances>>

Game Logic

Fig. 2: Service Components and their Interactions

The Cloud Process Execution Engine (CPEE) [MR14] is a service-oriented process execution

engine which itself is a RESTful web service. It manages the defense process instances and

provides multiple interfaces for interacting with the process instance and logging various

kinds of information.

The game server provides all calculations for the Ąghts and the villages and stores all

relevant information for the games which do not directly belong to the defense process

instances. This includes among others the population, magical alignment and topography of

the villages. It also communicates with the CPEE when the player updates the defense plan

of a village and controls the enemy: Each round it calculates which villages of a player will

be attacked by which enemy, and calculates the damage these enemies do.

The logging service generates the change and execution logs5 for the defense plan processes

which are provided by the CPEE. Additionally, it logs relevant information from the game

server, which can be used to further understand and evaluate these change and execution logs.

For example, the logging service logs when which enemy arrives at a certain village, how

many units were lost during the Ąghts, how the magical alignment shifts etc. In combination

with the change and execution logs, the logging service provides a complete picture of each

situation, which then can be used for further studies.

The user interface has been developed in Unity. It accesses the data and services provided

by the game server web service over RESTful interfaces.

5 Log format: XES, cf. http://www.xes-standard.org/

http://www.xes-standard.org/


Generating Data from Highly Flexible and Individual Process Settings 345

3.6 Generated Log Files

While players play the game, three types of log Ąles are generated and updated for each

village: The general log, the change log and the execution log. In this section we describe

these log Ąles in detail.

In the general log all information, ranging from the arrival of new enemies, over which

defense units have been added, up to magical alignment shifts are shown. This log Ąle sums

up the development of a certain individual - on the one hand contingent on the decisions the

player has made, on the other hand contingend on internal factors, on which the player has

no inĆuence (such as new enemy armies which arrive, population lost etc.). In our nursing

example, this log Ąle would contain some data about the development of the patient, maybe

including data like his body temperature, weight, blood sugar level, or other parameters

which are relevant for his treatment. Listing 1 shows an example general log of the village:

List. 1: General log example

<?xml v e r s i o n ="1 .0"? >

<log >

< even t i d ="1" t ype =" s t a r t e d " day ="" t e x t =" V i l l a g e founded on day " / >

< even t i d ="2" t ype =" newday " day ="2" t e x t ="New day : 2" / >

< even t i d ="3" t ype =" incoming " army ="3" day ="2" t e x t ="Army 3 incoming on day 2"/ >

< even t i d ="4" t ype =" a l i g n m e n t s h i f t " day ="2" a l i g nmen t =" h e a t " s h i f t ="10" newvalue ="70" / >

< even t i d ="5" t ype =" d e f e n s e " day ="2" d e f e n s e t y p e =" weapon " defensename ="Longbow " b u i l d i n g =" f o r g e " / >

< even t i d ="6" t ype =" d e f e n s e " day ="2" d e f e n s e t y p e =" weapon " defensename ="Round S h i e l d " b u i l d i n g =" f o r g e " / >

< even t i d ="7" t ype =" d e f e n s e " day ="2" d e f e n s e t y p e =" weapon " defensename ="One Handed Sword " b u i l d i n g =" f o r g e " / >

< even t i d ="8" t ype =" d e f e n s e " day ="2" d e f e n s e t y p e =" u n i t " defensename =" Knigh t " b u i l d i n g =" b a r r a c k s " / >

</ log >

The change log shows the process change operations the player has conducted while

planning his defenses. These change operations represent the next steps which will be taken

in order to save the village from the threat. Coming back to our nursing example, this log

Ąle represents the planned therapy steps which will be taken in the future in order to support

the patient in dealing with a certain condition. Listing 2 shows an example for a change log

from the game as it has been logged by the logging service. Here, the change shows the

insertion of a new defense strategy for a speciĄc village.

List. 2: Change log example

<?xml v e r s i o n ="1 .0"? >

< log xes . v e r s i o n = "2 . 0 " xes . f e a t u r e s =" a r b i t r a r y −dep th ">

< e x t e n s i o n name=" Concept " p r e f i x =" conc ep t " u r i =" h t t p : / / www. xes−s t a n d a r d . o rg / c onc ep t . x e s e x t " / >

< e x t e n s i o n name="Time " p r e f i x =" t ime " u r i =" h t t p : / / www. xes−s t a n d a r d . o rg / t ime . x e s e x t " / >

< e x t e n s i o n name=" Change " p r e f i x =" change " u r i =" h t t p : / / l e o n a r d o . wst . u n i v i e . ac . a t / a c a p l a n / change . x e s e x t " / >

< g l o b a l scope =" t r a c e ">

< s t r i n g key =" concep t : name " va l u e ="" / >

</ g l ob a l >

< c l a s s i f i e r name=" Change " keys =" change : t yp e change : s u b j e c t " / >

< t r a c e >

< s t r i n g key =" concep t : name " va l u e =" Change Log of V i l l a g e 1" / >

<even t >

< d a t e key =" t ime : t imes t amp " va l u e ="2016−05−11 17 : 36 : 09 +0200"/ >

< d a t e key =" day " v a l u e ="2" / >

< i n t key =" change : t r a n s a c t i o n " v a l u e ="0" / >

< s t r i n g key =" change : t yp e " v a l u e =" i n s e r t " / >

< s t r i n g key =" change : p o s i t i o n " v a l u e =" r o o t " / >

< s t r i n g key =" change : f r agmen t " v a l u e ="17"/ >

< s t r i n g key =" change : r a t i o n a l e " v a l u e =" t r o l l s c o u t s " / >

< s t r i n g key =" change : goa l " v a l u e =" d e f e a t army "/ >

</ even t >

</ t r a c e >

</ log >

The execution log sums up the process steps which have been executed in order to help the

village to overcome the enemy army. These steps have been planned beforehand (as can



346 Georg Kaes, Stefanie Rinderle-Ma

be seen in the change log). In the nursing domain, there has to exist an execution log for

each patient due to legal obligations: For each patient, each therapy step which has been

executed has to be strictly logged in order to trace back any errors which have may been

done if something goes wrong. Listing 3 depicts an execution log that reĆects how the units

are added to the villages defense.

List. 3: Execution log example

<?xml v e r s i o n ="1 .0"? >

< log xes . v e r s i o n = "2 . 0 " xes . f e a t u r e s =" a r b i t r a r y −dep th ">

< e x t e n s i o n name=" Concept " p r e f i x =" conc ep t " u r i =" h t t p : / / www. xes−s t a n d a r d . o rg / c onc ep t . x e s e x t " / >

< t r a c e >

<even t >

< i n t key =" day " v a l u e ="1" / >

< s t r i n g key =" concep t : name " va l u e =" a r c h e r t r a i n e d " / >

< s t r i n g key =" u n i t " v a l u e =" a r c h e r " / >

< s t r i n g key =" b u i l d i n g " v a l u e =" b a r r a c k s " / >

</ even t >

<even t >

< i n t key =" day " v a l u e ="1" / >

< s t r i n g key =" concep t : name " va l u e =" k n i g h t t r a i n e d " / >

< s t r i n g key =" u n i t " v a l u e =" k n i g h t " / >

< s t r i n g key =" b u i l d i n g " v a l u e =" b a r r a c k s " / >

</ even t >

<even t >

< i n t key =" day " v a l u e ="1" / >

< s t r i n g key =" concep t : name " va l u e =" f i r e b a l l c r e a t e d " / >

< s t r i n g key =" s p e l l " v a l u e =" f i r e b a l l " / >

< s t r i n g key =" b u i l d i n g " v a l u e =" a l chemy lab " / >

</ even t >

</ t r a c e >

</ log >

These logs provide valuable data sources for deriving insights on the efects of previously

applied changes based on process analysis techniques. In this section we have shown some

parallels between our log Ąles and the nursing domain. In the next section, we will evaluate

the log Ąles with equivalent data from the software sales and support domain.

4 Evaluation

The goal of the game-based setting is to provide log data that are not subject to any disclosure

restrictions and a test setting which can be used to develop algorithms and approaches

which support users when adapting process instances in a FIPS. The diferent types of log

Ąles, namely change, execution and general logs, have been introduced in the last section.

In this section we want to show that the information gathered in these log Ąles are actually

comparable to the set of information which is gathered in a real world FIPS. We claim that

if the data generated in our game matches the data generated during an individual situation

in a real world FIPS on a conceptual level, our data can be used to evaluate approaches and

algorithms to support process adaptions in FIPS.

For our evaluation we analyzed support cases from mesonic6, the ERP / CRM software

developer introduced in the expert interviews in Section 2.2.1. In their support network,

mesonic has over 200.000 diferent support cases describing the respective problem in free

text form. Each support case is classiĄed in one of four groups, ranging from bugs, where the

6 Due to data privacy issues we only publish anonymized parts of the actual data gathered from these support cases

in this paper. Since the original support cases are in German free text form, we shortened them and translated the

relevant parts.



Generating Data from Highly Flexible and Individual Process Settings 347

development team has some work to do, over wishes, where it has yet to be decided whether

the desired feature will be implemented or not, over general support cases up to questions

which are already answered in the manual. Depending on the caseŠs classiĄcation, the next

steps are decided: If it is a real bug or a wish, it will be discussed with the responsible

developer or, if necessary, the whole team. If it is a general support case, it will be handeled

in the support department internally. If it is something which can also be found in the manual,

the responsible supporter handles the case on his own. This classiĄcation represents the Ąrst

steps in the planning stage: Based on a cases ŞsymptomsŤ, the next steps are planned. In

addition to this classiĄcation, information such as the customerŠs name and id, the retailers

name and id, the version and build number of the product are logged.

Figure 3 summarizes the comparison of the data elements in the real world FIPS with the

data elements in the game: The top section shows an example of such a support case: Here,

some problems with the OLAP component have appeared which have been classiĄed as a

bug. On the bottom, example log Ąles from the game are shown. The mappings between

the data elements are indicated by the arrows. The general data of the support case (i.e.

customer id, retailer id etc.) is not part of any log Ąle, but static information which is saved

separately.

re
p

re
s
e

n
t 
th

e
 p

ro
b

le
m

 d
e

s
c
ri
p

ti
o

n

re
p

re
s
e

n
t 
c
h

a
n

g
e

s
 t
o

 t
h

e
 s

u
b

je
c
t

re
p

re
s
e

n
t 
e

x
e

c
u

te
d

 s
te

p
s

mesonic support case: general mesonic support case: support protocol & version history mesonic support case: development calendar

Customer ID:

Retailer ID:

Supporter:

Category:

Starting Date:

Title:

Version / Build:

Problem Description:

Support Protocol:

Version History:

Development Calendar:

game setting: change loggame setting: execution loggame setting: general log

<log xes.version="2.0" xes.features="arbitrary-depth">
  <extension name="Concept" prefix="concept" uri="[…]"/>
  <extension name="Time" prefix="time" uri="[…]"/>
  <extension name="Change" prefix="change" uri="[…]"/>
  <global scope="trace">
    <string key="concept:name" value=""/>
  </global>
  <classifier name="Change" keys="change:subject"/>
  <trace>
    <string key="concept:name" value="Change Log of V1"/>
    <event>
      <date key="timestamp" value="2016-05-11 17:36:09"/>
      <date key="day" value="2"/>
      <int key="change:transaction" value="0"/>
      <string key="change:type" value="insert"/>
      <string key="change:position" value="root"/>
      <string key="change:fragment" value="17"/>
      <string key="change:rationale" value="troll scouts"/>
      <string key="change:goal" value="defeat army"/>
    </event>
  </trace>
</log>

<log xes.version="2.0" xes.features="arbitrary-depth">
  <extension name="Concept" prefix="concept" uri="[...]"/>
  <trace>
    <event>
      <int key="day" value="1"/>
      <string key="concept:name" value="archer trained"/>
      <string key="unit" value="archer"/>
      <string key="building" value="barracks"/>
    </event>
    <event>
      <int key="day" value="1"/>
      <string key="concept:name" value="knight trained"/>
      <string key="unit" value="knight"/>
      <string key="building" value="barracks"/>
    </event>
    <event>
      <int key="day" value="1"/>
      <string key="concept:name" value="fireball created"/>
      <string key="spell" value="fireball"/>
      <string key="building" value="alchemylab"/>
    </event>
  </trace>
</log>

<log>
  <event id="1" type="started" day=„1“ text="Village founded"/>
  <event type="newday" day="2" text="New day: 2"/>
  <event id="2" type="incoming" army="3" day="2" 
              text="Army 3 incoming on day 2"/>
  <event type="alignmentshift" day="2" alignment="heat" 
              shift="10" newvalue="70"/>
  <event type="defense" day="2" defensetype="weapon" 
              defensename="Longbow" building="forge"/>
  <event type="defense" day="2" defensetype="weapon" 
              defensename="Round Shield" building="forge"/>
  <event type="defense" day="2" defensetype="weapon" 
              defensename=„Sword" building="forge"/>
  <event type="defense" day="2" defensetype="unit" 
              defensename="Knight" building="barracks"/>
</log>

1412099

1510785

Peter B.

Bug

10000.3

21.11.2013 - 13:33

OLAP crashes

When calling the OLAP wizard, the whole program
crashes. What should we do next?

Supporter: Check the system data of the customer 
(Windows version, etc.)
Developer L.Z.: OLAP API looks ok, nothing wrong there
checking registry entries next
Developer T.J.: Wizard interface looks ok too.
[…]

Supporter Peter B: Will visit customer tomorrow
Developer L.Z.: Take a look at the OLAP API
Developer T.J.: Take a look at the wizard interface

[…]

re
p

re
s
e

n
t p

la
n

n
e

d
 a

c
tio

n
s

basic information not part
of the log files, but the
general village description

Developer L.Z.: updated registry entries for OLAP
[…]

Fig. 3: Mapping of the log Ąles to a real world FIPS scenario

Data Source Comparison 1: The change log: At mesonic, next steps are planned with

the responsible employees and shown in their calendars. In the game, the change log shows

the planned steps for solving a villageŠs problem (i.e. the incoming enemy army).

After the next steps for handling the case are planned, they are executed by the responsible

employees. The executed steps are documented in the support case itself in free text format.

Data Source Comparison 2: The execution log: MesonicŠs support case documents

what has been done, who has done it, and when it has been done in order to solve the problem



348 Georg Kaes, Stefanie Rinderle-Ma

at hand. The execution log from our game represents the very same type of information: It is

shown when which step has been executed in order to deal with the villageŠs problem. This

information includes the time, what has been done, and which role has executed the steps.

All actions inĆuence the state of the product. These state changes are documented in the

support protocol as well as the companyŠs version control system.

Data Source Comparison 3: The general log: The version history of mesonic logs all

information about changes to the productŠs source code. These changes may be because of

actions which have been applied because of planned steps within the process, or factors not

related to the support case. In the game, the general log summarizes all state changes of a

villageŠs parameters. These changes happen because of the playerŠs actions, or because of

other events which are not inĆuenced directly by the player (but e.g., by the enemy army).

Conclusion: The comparison between the three generated log Ąles from the game and the

data gathered in a real world FIPS, namely the software sales and support setting, shows that

all relevant information to a FIPS can be found in the game logs. In the real world setting,

however, many data sets are free text, thus making further analysis diicult. Here we see a

big potential of the game: The structured data in XES respectively XML can be easily used

for further analysis, while representing all information relevant to a real world scenario.

5 Related Work

Virtual settings have already been used for process modeling. In [BRW11] the authors have

created a 3D virtual world to enhance the collaborative modeling of business processes -

even if the participants are not in geographical vicinity. By using avatars - 3D representations

of humans who engage in the modeling of business processes, this approach ofers various

forms of communication which would be typically only possible if the participants were in

geographical vicinity, i.e. speech, artifacts, gestures etc. [Ha16] presents another virtual

world approach for generating process models. In contrast to other approaches, participants

do not have to know any modeling language in order to generate a process model. Instead,

they behave as they would do in the real world. Based on their actions in a realistic

environment, a process model is generated.

While developing the game-based environment, we had to design the game mechanics

according to the FIPS requirements, while still making the game fun to play. This balancing

act is also an issue in serious games such as educational games [WK11], where fun game

mechanics have to be balanced with a serious background [Mo08].

Data obtained from computer games, especially from strategy games, has been used for the

development and validation of artiĄcial intelligence approaches on multiple occasions. In

[Av11], the authors show that tower defense games provide a good test environment for

numerous computational intelligence scenarios, ranging from map generation, over enemy

strategies, good defense strategies up to dynamic game balancing which keeps the player



Generating Data from Highly Flexible and Individual Process Settings 349

engaged and the enemies challenging. In [On13], the authors provide an overview over the

possibilities of artiĄcial intelligence in a real time strategy environment.

There exists a multitude of approaches on Ćexible process management [RW12]. First

requirements for FIPS have been introduced in [Ka14]. This paper extends these requirements

to a comprehensive list of building blocks for FIPS. Moreover, to the best of our knowledge,

there is no approach that maps building blocks of FIPS to a game-based experimentation

service. Logs produced by the experimentation service can be utilized by existing approaches

on user support in changing business processes such as [Aa09; Gü08; KR15; We09].

However, developing user support techniques are outside the scope of this work. Adaptive

Case Management (ACM) [MS13] also handles individual cases which evolve over time.

In contrast to FIPS, where a process instance evolves around a certain subject and its

environment, in ACM each case is handled individually.

6 Conclusion

FIPS can be found in many diferent domains, ranging from the nursing sector, over hotel

guest and software customer interaction to special needs schools and the PhD program.

Since all of these domains deal with highly sensitive data, it is almost impossible to get a

full picture of a situation where such a process instance has to be adapted without running

into data privacy and legal issues. For this reason we have developed a tower defense game

where the players are put into a comparable situation: They adapt highly individual process

instances in order to deal with problematic situations. The data thus generated can be used

without any issues, may they be legal or otherwise. Additionally, the setting itself can be

used as an evaluation method for support methodologies: A set of players who received

support while adapting their process instances can be compared with a set of players who

did not receive any support. If the supported group of players performs way better, it may be

an indicator that the support is actually helpful. In the future we will use the game in order

to develop and enhance support and analytical capabilities for FIPS. This includes analyzing

change logs, Ąnding out when the desired goals are reached, and, ultimately, Ąnding the

best adaptation for a given situation.

Acknowledgment This research has been funded by the Vienna Science and Technology

Fund (WWTF) through project ICT15-072.

References

[Aa09] van der Aalst, W. et al.: Declarative workĆows: Balancing between Ćexibility

and support. Computer Science-Research and Development 23/2, pp. 99Ű113,

2009.

[Av11] Avery, P.; Togelius, J.; Alistar, E.; van Leeuwen, R. P.: Computational intel-

ligence and tower defence games. In: 2011 IEEE Congress of Evolutionary

Computation (CEC). Pp. 1084Ű1091, June 2011.



350 Georg Kaes, Stefanie Rinderle-Ma

[BRW11] Brown, R.; Recker, J.; West, S.: Using virtual worlds for collaborative business

process modeling. Business Process Management Journal 17/3, pp. 546Ű564,

2011.

[Gü08] Günther, C.; Rinderle-Ma, S.; Reichert, M.; van Der Aalst, W.; Recker, J.:

Using process mining to learn from process changes in evolutionary systems.

International Journal of Business Process Integration and Management 3/1,

pp. 61Ű78, 2008.

[Ha16] Harman, J.; Brown, R.; Johnson, D.; Rinderle-Ma, S.; Kannengiesser, U.:

Augmenting process elicitation with visual priming: An empirical exploration

of user behaviour and modelling outcomes. Information Systems/, 2016.

[Ka14] Kaes, G.; Rinderle-Ma, S.; Vigne, R.; Mangler, J.: Flexibility Requirements in

Real-World Process Scenarios and Prototypical Realization in the Care Domain.

In: OTM 2014 Workshops. Pp. 55Ű64, 2014.

[KK97] Kueng, P.; Kawalek, P.: Goal-based business process models: creation and

evaluation. Business Process Management Journal 3/1, pp. 17Ű38, 1997.

[KR15] Kaes, G.; Rinderle-Ma, S.: Mining and Querying Process Change Information

Based on Change Trees. In: Service-Oriented Computing. Pp. 269Ű284, 2015.

[Mo08] Moreno-Ger, P.; Burgos, D.; Martínez-Ortiz, I.; Sierra, J. L.; Fernández-

Manjón, B.: Educational game design for online education. Computers in

Human Behavior 24/6, pp. 2530Ű2540, 2008.

[MR14] Mangler, J.; Rinderle-Ma, S.: CPEE - Cloud Process Exection Engine. In: IntŠl

Conference on Business Process Management. CEUR-WS.org, Sept. 2014.

[MS13] Motahari-Nezhad, H. R.; Swenson, K. D.: Adaptive Case Management: Overview

and Research Challenges. In: 2013 IEEE 15th Conference on Business Infor-

matics. Pp. 264Ű269, July 2013.

[On13] Ontañón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.; Churchill, D.; Preuss, M.: A

Survey of Real-Time Strategy Game AI Research and Competition in StarCraft.

Computational Intelligence and AI in Games 5/4, pp. 293Ű311, Dec. 2013,

issn: 1943-068X.

[RW12] Reichert, M.; Weber, B.: Enabling Flexibility in Process-Aware Information

Systems - Challenges, Methods, Technologies. Springer, 2012.

[Sc08] Schonenberg, H.; Mans, R.; Russell, N.; Mulyar, N.; van der Aalst, W.: Process

Ćexibility: A survey of contemporary approaches. In: Advances in Enterprise

Engineering I. Springer, 2008, pp. 16Ű30.

[We09] Weber, B.; Reichert, M.; Rinderle-Ma, S.; Wild, W.: Providing Integrated Life

Cycle Support in Process-Aware Information Systems. International Journal of

Cooperative Information Systems 18/01, pp. 115Ű165, 2009.

[WK11] Wallner, G.; Kriglstein, S.: Design and Evaluation of the Educational Game

DOGeometry: A Case Study. In. ACE Š11, ACM, Lisbon, Portugal, 14:1Ű14:8,

2011, isbn: 978-1-4503-0827-4.


