
B. Mitschang et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2017),

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 299

Incremental ETL Pipeline Scheduling for Near Real-Time

Data Warehouses

Weiping Qu1, Stefan Deßloch2

Abstract: We present our work based on an incremental ETL pipeline for on-demand data warehouse
maintenance. Pipeline parallelism is exploited to concurrently execute a chain of maintenance jobs,
each of which takes a batch of delta tuples extracted from source-local transactions with commit
timestamps preceding the arrival time of an incoming warehouse query and calculates Ąnal deltas to
bring relevant warehouse tables up-to-date. Each pipeline operator runs in a single, non-terminating
thread to process one job at a time and re-initializes itself for a new one. However, to continuously
perform incremental joins or maintain slowly changing dimension tables (SCD), the same staging
tables or dimension tables can be concurrently accessed and updated by distinct pipeline operators
which work on diferent jobs. Inconsistencies can arise without proper thread coordinations. In this
paper, we proposed two types of consistency zones for SCD and incremental join to address this
problem. Besides, we reviewed existing pipeline scheduling algorithms in our incremental ETL
pipeline with consistency zones.

1 Introduction

With increasing demand for real-time analytic results on data warehouses, the frequency

of refreshing data warehouse tables is increasing and the time window for executing an

ETL (Extract-Transform-Load) job is shrinking (to minutes or seconds). The design of data

warehouses and ETL maintenance Ćows is driven by not only eiciency but also data freshness

considerations. For eiciency, incremental ETL techniques [BJ10] have been widely used

in near real-time ETL Ćows and propagate deltas (insertions/deletions/updates) from source

tables to target warehouse tables instead of recomputing from scratch. Incremental ETL

is similar to materialized view maintenance while one of the diferences is that view

maintenance jobs are bracketed into internal transactions to make materialized views

transactionally consistent with base tables, while ETL Ćows are generally executed by

external tools without full transaction support. The consistency of data warehouses has been

addressed in previous work [ZGMW96, TPL08, GJ11] by applying a range of techniques to

ETL processes. In our work, the maintenance of warehouse tables is triggered immediately

by incoming queries (referred to as on-demand/lazy/deferred maintenance). At the time

each query arrives, it is suspended Ąrst in the system while a maintenance job is constructed

and propagates only those source-local transactions that have commit timestamps preceding

the query arrival time and have not yet been synchronized with warehouse tables. The query

resumes execution when the warehouse tables are brought up-to-date by this maintenance

job. An arrival of a sequence of queries forces our ETL Ćows to work on a sequence of

1 TU Kaiserslautern, AG Heterogene Informationssysteme, qu@informatik.uni-kl.de
2 TU Kaiserslautern, AG Heterogene Informationssysteme, dessloch@@informatik.uni-kl.de

qu@informatik.uni-kl.de
dessloch@@informatik.uni-kl.de

300 Weiping Qu, Stefan Deßloch

maintenance jobs (called maintenance job chain), each of which brings relevant warehouse

tables to the correct state demanded by a speciĄc query. For eiciency, we exploit pipeline

parallelism and proposed an idea of incremental ETL pipeline in [Qu15]. Figure 1 shows an

projection
lookup1

filter lookup2

join aggregation

m1m2m3m4

DWH

{

{m3

m
2

m
3 {

{m1

m5

{m2{m3{m4

m6

{ m5

{ m5{ m6

{ m6

input delta streams

m2{
ΔR5ΔR6

ΔS5ΔS6

t1t2t3t4t5t6

CDC

maintenance job chain

Fig. 1: Incremental ETL Pipeline

example of our incremental ETL pipeline and it consists of several components. The ETL

pipeline is a data Ćow system and represented as a directed acyclic graph G(V, E) where

all nodes v ∈ V (in triangle form) are ETL transformation operators and each edge e ∈ E

is an in-memory pipe used to transfer data from provider operator to consumer operator.

The sources of the ETL pipeline are the input delta streams (one for each source table) that

reside in the staging area. Each stream bufers source deltas (∆: insertions (I), deletions (D)

and updates (U)) which are captured by an independent change data capture (CDC) process

and maintained in commit timestamp order. An event of a query arrival at timestamp ti
triggers the construction of a maintenance job mti

which groups the bufered source deltas

with commit-time(∆) < ti and assigns them the id of this job. This job id is further sent to an

auxiliary maintenance job chain as an id list of in-progress maintenance jobs. Each pipeline

operator runs in a single, non-terminating thread and iterates through the id list. Given a

job id, an operator thread blocks until input deltas with matching id occur. Once it Ąnishes

processing, it re-initializes itself and fetches the next pending job id from the job chain.

In this paper, we address pipeline scheduling for the consistency property while executing a

chain of maintenance jobs using incremental ETL pipeline. We observed that data sets like

staging tables or dimension tables can be read and written by diferent operations in the

same pipeline. Take a logical incremental join (running multiple physical operators that need

to access/refresh old state of the same join tables) as example. Without synchronizing or

coordinating operator threads, anomalies can occur which breaks the consistency property

in data warehouses. The remainder of this paper is structured as follows. We review existing

scheduling algorithms from previous work mainly in ETL and stream processing domains

in Section 2. In Section 3, we analyze the consistency anomalies in ETL pipelines, propose

solutions called consistency zones, and discuss their implementations. Furthermore, we

compare the experimental results of an existing scheduling algorithm (MINIMUM COST)

with & without taking the consistency zones into account in Section 4.

2 Related Work

Previous research studies on workĆow/pipeline scheduling in ETL & stream processing

domains are mainly discussed here. Early work in stream processing domain addressed

Incremental ETL Pipeline Scheduling for Near Real-Time Data Warehouses 301

scheduling algorithms for execution time, throughput or memory consumption purpose.

Carney et al. [Ca03] presented their scheduling algorithms in their Aurora engine which

assigns operators (from continuous queries) to CPU processors (i.e. threads) at runtime

based on several metrics (e.g. selectivity, processing costs, thread context switches). To

reduce the scheduling and operator overheads, they group operators into superboxes and

traverse (i.e. thread assignment) operators in a superbox in a speciĄc order that yields

minimum context switches, a lower total execution time, or maximum memory utilization.

Their scheduler decides which operator is assigned a thread to process how many tuples

by estimating the processing cost (i.e. tuples per time unit). This is diferent from our case

where all operators are initially started as Java threads and scheduled originally by operating

system in a round robin, time-slicing manner. Application-level scheduling can be achieved

by setting priorities to threads at runtime where threads with higher priorities get longer

time quantum to process than those with lower priorities.

Karagiannis et al. [KVS13] also examined similar algorithms but in the (batch-oriented)

ETL domain for throughput and memory consumption purposes. In their work, they exploit

pipelining parallelism by dividing a large ETL workĆow to connected subĆows. Each

subĆow is a connected subgraph of original workĆow and allows the data pipelining

between operators. They further obtain a stratiĄcation of the subĆow graph to assign

mutually independent operators from subĆows to subsequent layers of execution. Scheduling

algorithms are applied in each subĆow. For examples, their MINIMUM COST (MC) algorithm

selects the operator with the largest volume of input data to Ąrst activate in a subĆow. All

work above suggested that continuous queries/ETL workĆows are divided into subĆows with

operators connected with each other while in our work, operators in a so-called consistency

zone can be separate and require to execute as an atomic group.

There exists also several work related to scheduling in data warehouses. Golab et al proposed

scheduling algorithm based on the staleness metric of update jobs in streaming data

warehouses [GJS12]. Resources are assigned to short/long jobs based on diferent policies.

In [TPL08], authors introduced loading schemes to deliver trickle-updates in batch-load

speed by bufering temporary incoming data either in memory on warehouse side or on

client disks depending on system load. Thiele et al. [TFL09] introduced a model to schedule

queries and updates at Ąne-grained data partition level for a balance between quality of

service and quality of data in warehouses.

3 Operator Thread Coordination & Synchronization

As introduced in Section 1, the incremental ETL pipeline from our previous work is capable

of handling multiple maintenance jobs simultaneously. However, potential consistency

anomalies can occur in this model, which is addressed in this section for slowly changing

dimensions and incremental join. Furthermore, we introduce two types of consistency zones

as solutions to resolve these anomalies.

Slowly changing dimension (SCD) tables have diferent maintenance types. For example,

SCDs of type 2 are history-keeping dimensions where multiple rows comprising the same

302 Weiping Qu, Stefan Deßloch

business key can represent a history of one entity while each row has a unique surrogate key

in the warehouse and was valid in a certain time period (from start date to end date and the

current row version has the end date null). With a change occurring in the source table of

a SCD table, the most recent row version of the corresponding entity (end date is null) is

updated by replacing the null value with the current date and a new row version is inserted

with a new surrogate key and a time range (current date ∼ null). However, the surrogate

key of the old row version may concurrently be looked up in the fact table maintenance

Ćow. Assume that the source tables, that are relevant to the maintenance of both fact tables

and SCDs, reside in diferent databases. A globally serializable schedule S of the source

actions on these source tables needs to be replayed in ETL Ćows for strong consistency in

data warehouses [ZGMW96]. Otherwise, a consistency anomaly can occur which will be

explained in the following (see Figure 2). At the upper-left part of Figure 2, two source

item I
update Iold insert Inew

lookup

item_sk

... ...

...

lookup

item_seq

CDC

sales

item S

plin

t3

t5

t1

t2

t7

t4

t6

t8

T2: insert into plin (id, item_bk, ...)

 values (1, 'abc', ...)

T4: insert into plin (id, item_bk, ...)

 values (2, 'abc', ...)

T1: update item S (item_bk, price)

 values ('abc', 100.00)

T3: update item S (item_bk, price)

 values ('abc', 90.00)

job action value

m1 I
(1, 'abc', ...)
(2, 'abc', ...)

job action value

m1 U ('abc', 100.00)
('abc', 90.00)

Δplin

Δitem S sk bk start end price

100 abc t1 120.00

100.00t2 t5

t6 null 90.00

abc

abc

101

102

t0

item I

id item_sk ...

1 101 ...

2 102 ...

Correct sales

Incorrect sales

Flow 1

Flow 2

id item_sk ...

1 102 ...

2 102 ...

id item_sk ...

1 101 ...

2 101 ...

or

Fig. 2: Anomaly Example for ETL Pipeline Execution without Coordination

tables: plin and item-S are used as inputs for a fact table maintenance Ćow (Flow 1) and

a dimension maintenance Ćow (Flow 2) to refresh warehouse tables sales and item-I,

respectively. Two source-local transactions T1 (start time: t1 ∼ commit time: t2) and T3

(t4∼t6) have been executed on item-S to update the price attribute of an item with business

key ('abc') in one source database. Two additional transactions T2 (t3∼t5) and T4 (t7∼t8)

have been also completed in a diferent database where a new state of source table plin is

afected by two insertions sharing the same business key ('abc'). Strong consistency of the

warehouse state can be reached if the globally serializable schedule S: T1 ←T2 ←T3 ←T4

is also guaranteed in ETL pipeline execution. A consistent warehouse state has been shown

at the bottom-right part of Figure 2. The surrogate key (101) found for the insertion (1,

'abc', ...) is afected by the source-local transaction T1 on item-S while the subsequent

insertion (2, 'abc', ...) will see a diferent surrogate key (102) due to T3. However, the

input delta streams only reĆect the local schedules S1: T1 ←T3 on item-S and S2: T2 ←T4

on plin. Therefore, there is no guarantee that the global schedule S will be correctly replayed

Incremental ETL Pipeline Scheduling for Near Real-Time Data Warehouses 303

since operator threads run independently without coordination. For example, at time t9, a

warehouse query occurs, which triggers an immediate execution of a maintenance job m1

that brackets T2 and T4 together on plin and groups T1 and T3 together on item-S. Two

incorrect states of the sales fact table have been depicted at the upper-right part of the

Ągure. The case where item_sk has value 101 twice corresponds to an incorrect schedule:

T1 ←T2 ←T4 ←T3 while another case where item_sk has value 102 twice corresponds to

another incorrect schedule: T1 ←T3 ←T2 ←T4. This anomaly is caused by an uncontrolled

execution sequence of three read-/write-operator threads: item_sk-lookup in Flow 1 and

(update-Iold , insert-Inew) in Flow 2.

The potential anomaly in incremental join is explained here. An incremental join is a

logical operator which takes the deltas (insertions, deletions and updates) on two join tables

as inputs and calculates target deltas for previously derived join results. In [BJ10], a delta

rule was deĄned for incremental joins. Let ∆R denote insertions on table R. As shown below,

given the old state of the two join tables (Rold and Sold) and corresponding insertions (∆R

and ∆S), new insertions afecting previous join results can be calculated by Ąrst identifying

matching rows in the mutual join tables for the two insertion sets and further combining

the incoming insertions found in (∆R ⋊⋉ ∆S). For simplicity, we use the symbol ∆ here to

denote all insertions I, deletions D and updates U. Hence, the rule applies to all three cases

with an additional join predicate (R.action = S.action) added to (∆R ⋊⋉ ∆S), where

action ∈ {I, D, U}.

∆(R ⋊⋉ S) ≡ (∆R ⋊⋉ Sold) ∪ (Rold ⋊⋉ ∆S) ∪ (∆R ⋊⋉ ∆S)

We see that a logical incremental join operator is mapped to multiple physical operators,

i.e. three join operators plus two union operators. To implement this delta rule in our

incremental ETL pipeline, two tables Rold and Sold are materialized in the staging area

during historical load and two extra update operators (denoted as ⊎) are introduced. One ⊎

is used to gradually maintain the staging table Sold using the deltas (∆m1
S,∆m2

S, ...∆mi−1
S)

from the execution of preceding maintenance jobs (m1,m2, ...,mi−1) to bring the join table

Sold to the consistent state Smi−1
for ∆mi

R:

Smi−1
= Sold ⊎ ∆m1

S... ⊎ ∆mi−1
S = Sold ⊎ ∆m1∼(i−1)

S

Another update operator ⊎ performs the same maintenance on the staging table Rold for

∆mi
S. Therefore, the original delta rule is extended in the following based on the concept of

our maintenance job chain.

∆mi
(R ⋊⋉ S) ≡ (∆mi

R ⋊⋉ Smi−1
) ∪ (Rmi−1

⋊⋉ ∆mi
S) ∪ (∆mi

R ⋊⋉ ∆mi
S)

≡ (∆mi
R ⋊⋉ (Sold ⊎ ∆m1∼(i−1)

S)) ∪ ((Rold ⊎ ∆m1∼(i−1)
R) ⋊⋉ ∆mi

S) ∪ (∆mi
R ⋊⋉ ∆mi

S)

The deltas ∆mi
(R ⋊⋉ S) of job mi are considered as consistent only if the update operators

have completed job m(i−1) on both staging tables before they are accessed by the join

operators. However, without further precautions, our ETL pipeline only ensures that the

maintenance job chain is executed in sequence in each operator thread. Inconsistencies can

occur when directly deploying this extended delta rule in our ETL pipeline runtime. This

is due to concurrent executions of join and update operators on the same staging table for

diferent jobs.

304 Weiping Qu, Stefan Deßloch

We use a simple example (see Figure 3) to explain the potential anomaly. The two staging

tables Customer and Company are depicted at the left-upper part of Figure 3 which both

have been updated by deltas from m1. Their input delta streams are shown at left-bottom

part and each of them contains a list of tuples in the form of (job, action, value)

which is used to store insertion-/deletion-/update-delta sets (only insertions with action I

are considered here) for each maintenance job. Logically, by applying our extended delta

id name company

Customer (refreshed by m1)

1 bob IBM

2 mary SAP

name nation

Company (refreshed by m1)

 IBM USA

job action value

ΔCustomer

m2

 (3, 'jack', 'HP')m3 I

(4, 'peter', 'SAP')

__

m4 I

job action value

ΔCompany

m2 ('HP', 'USA')

m3

I

('SAP', 'Germany')

m4

I

__

job action value

Δ(Customer Company)

m2 ∅
m3 (3, 'jack', 'HP', 'USA')

m4

I

⋈
__

(2, 'mary', 'SAP', 'Germany')

(4, 'peter', 'SAP', 'Germany')I

Incorrect Δ(Customer Company):⋈
(Δm3Customer Companym1)∪(Customerm4 Δm3Company)

∪(Δm3Customer Δm3Company)
⋈
⋈

⋈

job action value

m3 I (2, 'mary', 'SAP', 'Germany')

(4, 'peter', 'SAP', 'Germany')

Fig. 3: Anomaly Example for Pipelined Incremental Join

rule, consistent deltas ∆(Customer ⋊⋉ Company) would be derived which are shown at

the right-upper part. For job m3, a matching row ('HP', 'USA') can be found from the

company table for a new insertion (3, 'jack', 'HP') on the customer table after the

company table was updated by the preceding job m2. With another successful row-matching

between ∆m3
Company and Customerm2

, the Ąnal deltas are complete and correct. However,

since each operator thread runs independently and has diferent execution latencies for

inputs of diferent sizes, an inconsistent case can occur, which is shown at the right-bottom

part. Due to diferences in processing costs, the join operator ∆m3
Customer⋊⋉Companym1

has already started before the update operator completes m2 on the company table and

has mistakenly missed the matching row ('HP', 'USA') from m2. And the other join

operator Customerm4
⋊⋉∆m3

Company accidentally reads a phantom row (4, 'peter',

'SAP') from the maintenance job m4 that is produced by the fast update operator on the

customer table. This anomaly is caused by a pipeline execution without synchronization of

read-&write-threads on the same staging table.

Consistency zone is a subgraph of the original Ćow graph. Operator nodes in a consistency

zone do not have to be interconnected via data pipes while they always afect the same shared

mutable objects (e.g. dimension/staging tables). To change the state of shared mutable

objects using a chain of maintenance jobs in a consistent manner, the completeness of a

maintenance job is synchronized in a zone while the actual execution sequence of inner

nodes depends of the type of the consistency zone, e.g. in a speciĄc order or in parallel. The

concept of consistency zone is similar to nested transactions.

Pipelined Slowly Changing Dimension aims at a correct globally serializable schedule

S. The CDC component participates in rebuilding S by Ąrst tracking start or commit

timestamps of source-local transactions3, mapping them to global timestamps and Ąnally

3 Execution timestamps of in-transaction statements have to be considered as well, which is omitted here.

Incremental ETL Pipeline Scheduling for Near Real-Time Data Warehouses 305

item Iupdate Iold insert Inew

lookup

item_sk

... ...

... ...

... ...

... ...

lookup

item_seq

CDC

{{

{

{{

{

{{ sales

task1task2

m1

m1

task1task2

m1

task3

①

①

② ③
④

⑤

⑥
⑦ z3: working on task1

Δitem-S

Δplin

Fig. 4: Pipelined SCD with Consistency Zone

comparing them to Ąnd out a global order of actions. In addition, the execution of relevant

operator threads needs to be coordinated in this global order in the incremental ETL

pipeline. Therefore, a newly deĄned consistency zone is illustrated in Figure 44. Recall

that a maintenance job is constructed when a query is issued or when the size of any

input delta stream exceeds a threshold (see Section 1). We reĄne the maintenance job into

multiple internal, Ąne-grained tasks whose construction is triggered by a commit action of a

source-local transaction afecting the source table of a SCD. As shown in Figure 4, 1 the

CDC continuously puts those captured source deltas into the input delta streams (one is

∆plin) of the fact table maintenance Ćow. At this time, a source-local update transaction

commits on item-S, which creates a task1 and comprises the delta tuples derived from this

update transaction 2 . This immediately creates another task1 in the input delta stream ∆plin

which contains all current available delta tuples 3 . This means that all source-local, update

transactions belonging to the task1 in ∆plin have committed before the task1 of ∆item-S.

With a commit of the second update transaction on source table item-S, two new task2 are

created in both input delta streams 4 . When a query is issued at a later time, a new m1 is

constructed which contains task1∼2 on ∆item-S and task1∼3 on ∆plin (delta tuples in task3

commit after the task2 in ∆item-S). During execution on m1, a strict execution sequence

between the atomic unit of update-Iold and insert-Inew and the item_sk-lookup is forced

for each taski in m1. The update-Iold and insert-Inew have to wait until the item_sk-lookup

Ąnishes task1 5 and the item_sk-lookup cannot start to process task2 until the atomic

unit completes task1 6 . This strict execution sequence can be implemented by the (Java)

wait/notify methods as a provider-consumer relationship. Furthermore, in order to guarantee

the atomic execution of both update-Iold and insert-Inew at task level, a (Java) cyclic

barrier5 object can be used here to let update-Iold wait to start a new task until insert-Inew

4 It is worth to note that the current ETL tool does not provide direct implementation of the SCD (type 2)

maintenance. To address this, we simply implement SCD (type 2) using update-Iold followed by insert-Inew .

These two operator threads need to be executed in an atomic unit so that queries and surrogate key lookups will

not see an inconsistent state or fail when checking a lookup condition. Another case that matters is that the

execution of Flow 1 and Flow 2 mentioned previously is not performed strictly in sequence in a disjoint manner.

Instead of using Ćow coordination for strong consistency, all operators from the two Ćows (for fact tables and

dimension tables) are merged into a new big Ćow where the atomic unit of update-Iold insert-Inew operator

threads can be scheduled with the item_sk-lookup operator thread at a Ąne-grained operator level.

5 One cyclic barrier object (cb) can be embedded in those threads that need to be synchronized on the completion of

the same job/task. Each time a new job/task starts , this cb object sets a local count to the number of all involved

threads. When a thread completes, it decrements the local count by one and blocks until the count becomes zero.

306 Weiping Qu, Stefan Deßloch

completes the current one 6 . Both thread synchronization and coordination are covered in

this consistency zone 7 .

Pipelined Incremental Join is supported by two consistency zones and an extra duplicate

elimination operator. The consistency zone synchronizes the read-&write-threads on the

same maintenance job and a new maintenance job is not started until all involving threads

have completed the current one. Figure 5 shows the implementation of our pipelined

incremental join. There are two consistency zones: z1(update-Rold, Rold ⋊⋉ ∆S) and

... ...

filter

lookup

update Rold

update Sold

ΔR5ΔR6

... ... ΔS5ΔS6

⋈ΔR Sold

⋈Rold ΔS

⋈ΔR ΔS

duplicate

elimination

... ...

{m2{m3{m4

{ {
m2m3

Ro+m1+m2+m3

{m2{m3{m4

So+m1

{m
2

{

m4

{m1

{ {m
3

m
4

 z2: working on m2

z1: working on m4

Fig. 5: Pipelined Incremental Join with Consistency Zones

z2(∆R⋊⋉Sold, update-Sold), each of which maintains a (Java) cyclic barrier object to

synchronize reads and writes on the same staging table for each job. The processing speeds

of both threads in z1 are very similar and fast, so both of them are currently working on

m4 and there is no new maintenance job bufered in any of the in-memory pipes of them.

However, even though the original execution latency of the join operator thread ∆R⋊⋉Sold is

low, it has to be synchronized with the slow operator update-Sold on m2 and a pile-up of

maintenance jobs (m2∼4) exists in its input pipe. It is worth to note that a strict execution

sequence of two read-/write threads is not required in a consistency zone (i.e. update-Rold

does not have to start only after Rold ⋊⋉ ∆S completes to meet the consistency requirement

Rmi−1
⋊⋉ ∆mi

S). In case Rmi−1
⋊⋉ ∆mi

S reads a subset of deltas from mi (in R) due to

concurrent execution of update-Rmi−1
on mi , duplicates will be deleted from the results of

∆mi
R⋊⋉∆mi

S by the downstream duplicate elimination operator. Without a strict execution

sequence in consistency zones, involved threads can be scheduled on diferent CPU cores

for performance improvement. Furthermore, even though two consistency zones Ąnish

maintenance jobs in diferent paces, only the m2 part of their outputs is visible to the

downstream duplicate elimination operator since it currently works on m2.

4 Consistency-Zone-Aware Pipeline Scheduling

According to the scheduling algorithm called MINIMUM COST (MC) [KVS13] described

in Section 2, an ETL workĆow is divided into subĆows (each of which allows pipelining

operators) and the operator having the largest volume of input data is selected to execute

in each subĆow. In Figure 5, a possible fragmentation results in following operator

Incremental ETL Pipeline Scheduling for Near Real-Time Data Warehouses 307

groups6: (Ąlter, update-Rold, ∆R⋊⋉Sold), (lookup, Rold ⋊⋉ ∆S, update-Sold), (∆R⋊⋉Sold)

and (duplication elimination). However, in incremental ETL pipeline, eiciency can degrade

due to synchronized execution of threads in consistency zones. The performance of a very

fast pipelined subĆow can drop signiĄcantly if one of its operators hooks a separate slow

operator in a consistency zone outside this subĆow. The side efect of consistency zones

determines that they perform like blocking operations. Hence, all operators in consistency

zones should be grouped together to new subĆows as (update-Rold , Rold ⋊⋉ ∆S), (∆R⋊⋉Sold ,

update-Sold), etc., which is called consistency-zone-aware MC.

Experiments: we compared the original MC and consistency-zone-aware MC here and

examine the latencies of maintenance jobs in two system settings where input delta streams

have a low or high input ratio, respectively (system load reaches its limit with a high input

ratio). TPC-DS benchmark (www.tpc.org/tpcds) was used for experiments. The testbed

comprised the fact table store sales (of scale factor 1), surrounding dimension tables and

two staging tables materialized during historical load for pipelined incremental join. The

data set is stored in a Postgresql (version 9.5) on a remote machine (2 Quad-Core Intel Xeon

Processor E5335, 4×2.00 GHz, 8GB RAM). Two maintenance Ćows (used to maintain

the store sale fact table and the item dimension table) were merged into an incremental

ETL (job) pipeline (see Figure 5) that ran locally (Intel Core i7-4600U Processor, 2×2.10

GHz, 12GB RAM) in our pipeline engine which is extended from the original Pentaho

Kettle (version 4.4.3, www.pentaho.com) engine. A local CDC thread7 simulated a low

input ratio (150 tuples/s) and a high input ratio (700 tuples/s), respectively. Besides, another

thread continuously issued queries to the warehouse, which triggered the constructions

of maintenance jobs in random time intervals. In each setting with diferent scheduling

policies, we collected the execution time as job latency (in seconds) for 70 maintenance

jobs.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

jo
b

la
te

nc
y

[s
ec

on
ds

]

maintenance job id

consistency-zone-aware MC
original MC

Fig. 6: input delta ratio: 150 tuples/s

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70

jo
b

la
te

nc
y

[s
ec

on
ds

]

maintenance job id

consistency-zone-aware MC
original MC

Fig. 7: input delta ratio: 700 tuples/s

Both Ągure 6 and 7 show that original MC performs worse than consistency-zone-aware

MC, especially under high input ratio. The reason why original MC performs slow is due

to the fact that the processing cost of the lookup operator was much slower, which causes

starvations of downstream Rold ⋊⋉ ∆S and update-Sold, as they are grouped in the same

subĆow as deĄned in original MC. However, the input pipes of update-Rold and ∆R⋊⋉Sold

grow drastically since they block due to our consistency zone features. More time quanta

were assigned to them, which is not necessary and reduces the processing quantum of the

6 blocking operations are subĆows of their own.

7 ran continuously to feed the input delta streams with source deltas to update the store sales and item table.

308 Weiping Qu, Stefan Deßloch

slow lookup operator. Hence, our consistency-zone-aware MC addresses this problem and

groups the threads in consistency zones together to execute.

5 Conclusion

Based on an incremental ETL pipeline engine, we explained the potential consistency

anomalies for incremental joins and slowly changing dimensions using easy-to-understand

examples and proposed consistency zones with appropriate implementations. Furthermore,

we moved a step towards extending previous scheduling algorithm with consistency zone

features using experiments. We leave a detailed validation of further scheduling algorithms

as future work.

References

[BJ10] Behrend, Andreas; Jörg, Thomas: Optimized incremental ETL jobs for maintaining data
warehouses. In: Proceedings of the Fourteenth International Database Engineering &
Applications Symposium. ACM, pp. 216Ű224, 2010.

[Ca03] Carney, Don; Çetintemel, Uğur; Rasin, Alex; Zdonik, Stan; Cherniack, Mitch; Stone-
braker, Mike: Operator scheduling in a data stream manager. In: Proceedings of the 29th
international conference on Very large data bases-Volume 29. VLDB Endowment, pp.
838Ű849, 2003.

[GJ11] Golab, Lukasz; Johnson, Theodore: Consistency in a Stream Warehouse. In: CIDR.
volume 11, pp. 114Ű122, 2011.

[GJS12] Golab, Lukasz; Johnson, Theodore; Shkapenyuk, Vladislav: Scalable scheduling of
updates in streaming data warehouses. IEEE Transactions on knowledge and data
engineering, 24(6):1092Ű1105, 2012.

[KVS13] Karagiannis, Anastasios; Vassiliadis, Panos; Simitsis, Alkis: Scheduling strategies for
eicient ETL execution. Information Systems, 38(6):927Ű945, 2013.

[Qu15] Qu, Weiping; Basavaraj, Vinanthi; Shankar, Sahana; Dessloch, Stefan: Real-Time
Snapshot Maintenance with Incremental ETL Pipelines in Data Warehouses. In:
International Conference on Big Data Analytics and Knowledge Discovery. Springer,
pp. 217Ű228, 2015.

[TFL09] Thiele, Maik; Fischer, Ulrike; Lehner, Wolfgang: Partition-based workload scheduling
in living data warehouse environments. Information Systems, 34(4):382Ű399, 2009.

[TPL08] Thomsen, Christian; Pedersen, Torben Bach; Lehner, Wolfgang: RiTE: Providing
on-demand data for right-time data warehousing. In: 2008 IEEE 24th International
Conference on Data Engineering. IEEE, pp. 456Ű465, 2008.

[ZGMW96] Zhuge, Yue; Garcia-Molina, Hector; Wiener, Janet L: The Strobe algorithms for multi-
source warehouse consistency. In: Parallel and Distributed Information Systems, 1996.,
Fourth International Conference on. IEEE, pp. 146Ű157, 1996.

