Efficient Batched Distance and Centrality

Computation in
Unweighted and Weighted Graphs

Manuel Then, Stephan Gunnemann, Alfons Kemper, Thomas Neumann
Technische Universitat Munchen

Chair for Database Systems

TUTI

Graph Centrality

Goal: Find the most central vertices
* Influencers in social networks
« Critical routers in computer networks

Centrality measures

» Degree: degree centrality, PageRank
* Distances: closeness centrality

» Paths: betweenness centrality

Challenges

« Algorithmic complexity

« Random data access

* Redundant computation, hard to vectorize

Manuel Then | Efficient Batched Distance and Centrality Computation

TUT

+
¢ tableau

Challenges Visualized

Unweighted closeness centrality build on BFSs

Initial — lteration 1 _—

BFS, 6.0
© I
oY%

Goal: Run multiple BFSs concurrently and share common traversals

Manuel Then | Efficient Batched Distance and Centrality Computation

lteration 2

TUTI

Background: Multi-Source BFS

BFS traversals using bit operations
YVveV: Vneneighbors(v): next[n] = visit[v] & ~seen[n]

Initial

0%

b1 bo

XT]

X

b1 bo

[XT]

X

O U, WN B

oOuUulh, WN B

visit

Used to win SIGMOD 2014 programming contest

[1] Then et al., The More the Merrier: Efficient Multi-source Graph Traversal, VLDB 2015

Seen

TUT

+
¢ tableau

[2] Kaufmann et al., Parallel Array-Based Single- and Multi-Source Breadth First Searches on Large Dense Graphs, EDBT 2017

Manuel Then | Efficient Batched Distance and Centrality Computation

4

TUT

+
¢ tableau

Overview

Centrality in unweighted graphs
Centrality in weighted graphs
Evaluation

Summary and Future Work

Manuel Then | Efficient Batched Distance and Centrality Computation 5

Unweighted Closeness Centrality

Distance-based centrality metric
« Central vertices have a low average geodesic distance to all other vertices

reachable(v)|?

CC, = .
(‘V‘ o 1) * (ZuEreachable(v) : dlstance(v, u))

MS-BFS from all vertices
 No need to store distances

Efficient batch incrementer
» Significantly improves the performance of counting discovered vertices

Manuel Then | Efficient Batched Distance and Centrality Computation

TUT

+
¥ tableau

TUT

+
¢ tableau

Unweighted Betweenness Centrality

Path-based centrality metric
» Central vertices are part of many shortest paths

Z _ {2 | P € shortest_paths(u,w) A\v € P}

BC, = :
|shortest_paths(u,w)| * (|reachable(v)|) * (|reachable(v)| — 1)

u,wevV, u#v#w

Naive computation very costly. We use Brandes’s algorithm

Forward step can leverage MS-BFS
« Batching improves locality
» Allows vectorization of numeric computations

Challenges: Backward step requires
 Reverse MS-BFS
» Vertex predecessor calculation

[3] Brandes, A Faster Algorithm for Betweenness Centrality, Journal of Mathematical Sociology, 2001

Manuel Then | Efficient Batched Distance and Centrality Computation 7

TUT

+
¥ tableau

Reverse MS-BFS and Vertex Predecessors

Reverse BFS: traverse graph in inverse BFS order
« Stacks unsuited for MS-BFS

Reconstruct traversal order forward iteration frontiers

Batched vertex predecessor computation

frontiersliter—1][p] & frontiersiter|[v], if (p,v) €E

redecessorln(p,v) =
P (p,v) {@, otherwise

Correctness proof and full batched betweenness centrality algorithm in the paper

Manuel Then | Efficient Batched Distance and Centrality Computation 8

TUT

+
¢ tableau

Overview

Centrality in weighted graphs
Evaluation

Summary and Future Work

Manuel Then | Efficient Batched Distance and Centrality Computation 9

TUT

+
¥ tableau

Batched Algorithm Execution

Problem: MS-BFS cannot be used for distance computation in weighted graphs

Batched Algorithm Execution

* Run algorithm from multiple vertices at the same time
* Synchronize algorithm executions

« Share common computations and data accesses

« Adapt memory layout

v[o]- o[- o[-
O’\\

V[fo s |=]o0 = | 0
s

Voo | o | =513 | 4 314

Vol o | 511 511

V5 oo))) 4 5

Manuel Then | Efficient Batched Distance and Centrality Computation 10

TUT

+
¥ tableau

Batched Algorithm Execution: Example

Batched Bellman-Ford algorithm

Weighted all pairs shortest path

0 1 2 0 1 2
vio}l |o 0 v| o o
V| “‘,“\\ o) v,| O} 0 0
vf«] 53] |3 V| e al |a
Vy| » ‘ 5 '::“) Vy| 1} 1
v =1 2 v = = z
Non-batched execution

Batched algorithm execution

« ... improves temporal and spatial locality

« ... facilitates vectorized computation

Manuel Then | Efficient Batched Distance and Centrality Computation

o] JE
[] o = |0
“H 3] a4 3|4
5| 1 5|1
HE 4 s

Batched execution

1

Batched Weighted Distances

Comparison of common weighted distance algorithms:

Kronecker, 5 weights Kronecker, 10 weights Kronecker, 100 weights

1 M-

10 k-

100 -

1M+

Runtime (in milliseconds)

10 k4

100 -

10 k 1™ 10 k 1™ 10 k 1M
Graph size (number of vertices)

Manuel Then | Efficient Batched Distance and Centrality Computation

TUTI

.
e
Y +ableau

Execution
-@- Batched
-@- Non-batched

Algorithm
O Bellman-Ford
A Dijkstra

12

TUT

+
¥ tableau

Weighted Centralities

Closeness Centrality
» Batched execution allows vectorizing the CC computation from the distances

Betweenness Centrality

* Requires global distance ordering
» Implicit predecessor computation

» Vectorized numeric computations

Manuel Then | Efficient Batched Distance and Centrality Computation 13

TUT

+
¢ tableau

Overview

Evaluation

Summary and Future Work

Manuel Then | Efficient Batched Distance and Centrality Computation 14

TUT

+
¢ tableau

Evaluation: Setup

Algorithms implemented as stand-alone programs
« C++14, GCC 5.2.1
* No framework dependencies

Synthetic datasets

« LDBC Social Network friendships graph

» Kronecker graph, edge factor 32

Real-world datasets

» Citeseer (384k verts), DBLP (1.3M verts), Wikipedia (1.9M verts), and Hudong (3M verts)
« KONECT repository

Evaluated on dual Intel Xeon E5-2660 v2, 20x 2.2GHz, 256GB

Manuel Then | Efficient Batched Distance and Centrality Computation 15

TUTI

N
+
Y +ableau

Evaluation: Number of Concurrent Executions

Closeness Centrality, Unweighted Closeness Centrality, Weighted

10— e
o C
S °T C
8 - I
o
e 27 I Dataset
2 . = LDBC 100
= E
S = o -/ Kronecker S21
X
o :

Betweenness Centrality, Unweighted Betweenness Centrality, Weighted —— Citeseer
E —-< DBLP
g i | <> Hudong
S0 = </ Wikipedia
o C E
2 52 -
S °T n
(U F -
m
2-r L
1

1 4 8 16 32 64 128 256 1 4 8 16 32 64 128 256
Number of concurrent executions

Manuel Then | Efficient Batched Distance and Centrality Computation 16

Evaluation: Graph Size Scalability

LDBC, Unweighted

LDBC, Weighted

104

Batched algorithm execution speedup

5 @
L i @)]
$é+ ---------- 3 @ A
o4 L e
A P
-|IIII! 1 1 1 lllll! 1 1 1 lllll! 1 1 1 l -|IIII! 1 1 ;‘lllll! 1 1 1 lllll! 1 1 1 l
10 k 100 k 1M 10 k 100 k

Graph size (number of vertices)

Manuel Then | Efficient Batched Distance and Centrality Computation

TUTI

+
+
Y +tableau

Algorithm
O Closeness Centrality
/\ Betweenness Centrality

—~+ vs. Brandes's BC

WeightCount
1

@10

17

Evaluation: Number of Edge Weights

LDBC, Weighted
=
o °T
o
w L
5 Q """""""""" e
G AN

) S .8
(0] o
£ S)
5 A N
D - A -------------
3L o
S T S~ - AN
-.(B' i _&_ _____
m

l 1 111 ! 1 1 1 l 1 111 ! 1 1 1 l 1 111 ! 1

10k 100 k 1M

Graph size (number of vertices)

Manuel Then | Efficient Batched Distance and Centrality Computation

TUTI

oy
v +ableau

Algorithm
O Closeness Centrality

/\ Betweenness Centrality

WeightCount
5

@ 10
100

18

Summary

Batched algorithm execution

« Shares common data accesses,

» Avoids/vectorizes computations, and

« Significantly reduces graph algorithm execution times

Improved centrality computation performance
» Unweighted by up to 20x (closeness) and 6x (betweenness)
» Weighted by up to 7x (closeness) and 3x (betweenness)

Details and all algorithms are listed in the paper

Future work:
Apply batched execution to further classes of algorithms

Manuel Then | Efficient Batched Distance and Centrality Computation

TUT

+
¥ tableau

19

