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Graph Centrality

Goal: Find the most central vertices
* Influencers in social networks
« Critical routers in computer networks

Centrality measures

» Degree: degree centrality, PageRank
* Distances: closeness centrality

» Paths: betweenness centrality

Challenges

« Algorithmic complexity

« Random data access

* Redundant computation, hard to vectorize
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Challenges Visualized

Unweighted closeness centrality build on BFSs
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Goal: Run multiple BFSs concurrently and share common traversals
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Background: Multi-Source BFS

BFS traversals using bit operations
YVveV: Vneneighbors(v): next[n] = visit[v] & ~seen[n]
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Used to win SIGMOD 2014 programming contest

[1] Then et al., The More the Merrier: Efficient Multi-source Graph Traversal, VLDB 2015
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[2] Kaufmann et al., Parallel Array-Based Single- and Multi-Source Breadth First Searches on Large Dense Graphs, EDBT 2017
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Overview

Centrality in unweighted graphs
Centrality in weighted graphs
Evaluation

Summary and Future Work
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Unweighted Closeness Centrality

Distance-based centrality metric
« Central vertices have a low average geodesic distance to all other vertices

reachable(v)|?

CC, = .
(‘V‘ o 1) * (ZuEreachable(v) : dlstance(v, u))

MS-BFS from all vertices
 No need to store distances

Efficient batch incrementer
» Significantly improves the performance of counting discovered vertices
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Unweighted Betweenness Centrality

Path-based centrality metric
» Central vertices are part of many shortest paths

Z _ {2 | P € shortest_paths(u,w) A\v € P}

BC, = :
|shortest_paths(u,w)| * (|reachable(v)|) * (|reachable(v)| — 1)

u,wevV, u#v#w

Naive computation very costly. We use Brandes’s algorithm

Forward step can leverage MS-BFS
« Batching improves locality
» Allows vectorization of numeric computations

Challenges: Backward step requires
 Reverse MS-BFS
» Vertex predecessor calculation

[3] Brandes, A Faster Algorithm for Betweenness Centrality, Journal of Mathematical Sociology, 2001
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Reverse MS-BFS and Vertex Predecessors

Reverse BFS: traverse graph in inverse BFS order
« Stacks unsuited for MS-BFS

Reconstruct traversal order forward iteration frontiers

Batched vertex predecessor computation

frontiersliter—1][p] & frontiersiter|[v], if (p,v) €E

redecessorln(p,v) =
P (p,v) {@, otherwise

Correctness proof and full batched betweenness centrality algorithm in the paper
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Overview

Centrality in weighted graphs
Evaluation

Summary and Future Work
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Batched Algorithm Execution

Problem: MS-BFS cannot be used for distance computation in weighted graphs

Batched Algorithm Execution

* Run algorithm from multiple vertices at the same time
* Synchronize algorithm executions

« Share common computations and data accesses

« Adapt memory layout
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Batched Algorithm Execution: Example

Batched Bellman-Ford algorithm

Weighted all pairs shortest path
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Batched algorithm execution

« ... improves temporal and spatial locality

« ... facilitates vectorized computation
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Batched Weighted Distances

Comparison of common weighted distance algorithms:

Kronecker, 5 weights Kronecker, 10 weights Kronecker, 100 weights
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Execution
-@- Batched
-@- Non-batched
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O Bellman-Ford
A Dijkstra
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Weighted Centralities

Closeness Centrality
» Batched execution allows vectorizing the CC computation from the distances

Betweenness Centrality

* Requires global distance ordering
» Implicit predecessor computation

» Vectorized numeric computations
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Overview

Evaluation

Summary and Future Work
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Evaluation: Setup

Algorithms implemented as stand-alone programs
« C++14, GCC 5.2.1
* No framework dependencies

Synthetic datasets

« LDBC Social Network friendships graph

» Kronecker graph, edge factor 32

Real-world datasets

» Citeseer (384k verts), DBLP (1.3M verts), Wikipedia (1.9M verts), and Hudong (3M verts)
« KONECT repository

Evaluated on dual Intel Xeon E5-2660 v2, 20x 2.2GHz, 256GB
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Evaluation: Number of Concurrent Executions

Closeness Centrality, Unweighted Closeness Centrality, Weighted
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Evaluation: Graph Size Scalability

LDBC, Unweighted

LDBC, Weighted

104

Batched algorithm execution speedup
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Algorithm
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Evaluation: Number of Edge Weights

LDBC, Weighted
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Summary

Batched algorithm execution

« Shares common data accesses,

» Avoids/vectorizes computations, and

« Significantly reduces graph algorithm execution times

Improved centrality computation performance
» Unweighted by up to 20x (closeness) and 6x (betweenness)
» Weighted by up to 7x (closeness) and 3x (betweenness)

Details and all algorithms are listed in the paper

Future work:
Apply batched execution to further classes of algorithms
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