
Manuel Then, Stephan Günnemann, Alfons Kemper, Thomas Neumann

Technische Universität München

Chair for Database Systems

Efficient Batched Distance and Centrality
Computation in
Unweighted and Weighted Graphs

Goal: Find the most central vertices
• Influencers in social networks
• Critical routers in computer networks

Centrality measures
• Degree: degree centrality, PageRank
• Distances: closeness centrality
• Paths: betweenness centrality

Challenges
• Algorithmic complexity
• Random data access
• Redundant computation, hard to vectorize

2Manuel Then | Efficient Batched Distance and Centrality Computation

Graph Centrality

Unweighted closeness centrality build on BFSs

Goal: Run multiple BFSs concurrently and share common traversals

3Manuel Then | Efficient Batched Distance and Centrality Computation

Challenges Visualized

BFS traversals using bit operations
∀v∈V: ∀n∈neighbors(v): next[n] = visit[v] & ~seen[n]

Used to win SIGMOD 2014 programming contest

4Manuel Then | Efficient Batched Distance and Centrality Computation

Background: Multi-Source BFS

[1] Then et al., The More the Merrier: Efficient Multi-source Graph Traversal, VLDB 2015
[2] Kaufmann et al., Parallel Array-Based Single- and Multi-Source Breadth First Searches on Large Dense Graphs, EDBT 2017

Motivation: Graph Centrality

Background: MS-BFS

Centrality in unweighted graphs

Centrality in weighted graphs

Evaluation

Summary and Future Work

5Manuel Then | Efficient Batched Distance and Centrality Computation

Overview

Distance-based centrality metric
• Central vertices have a low average geodesic distance to all other vertices

MS-BFS from all vertices
• No need to store distances

Efficient batch incrementer
• Significantly improves the performance of counting discovered vertices

6Manuel Then | Efficient Batched Distance and Centrality Computation

Unweighted Closeness Centrality

Path-based centrality metric
• Central vertices are part of many shortest paths

Naïve computation very costly. We use Brandes’s algorithm

Forward step can leverage MS-BFS
• Batching improves locality
• Allows vectorization of numeric computations

Challenges: Backward step requires
• Reverse MS-BFS
• Vertex predecessor calculation

7Manuel Then | Efficient Batched Distance and Centrality Computation

Unweighted Betweenness Centrality

[3] Brandes, A Faster Algorithm for Betweenness Centrality, Journal of Mathematical Sociology, 2001

Reverse BFS: traverse graph in inverse BFS order
• Stacks unsuited for MS-BFS

Reconstruct traversal order forward iteration frontiers

Batched vertex predecessor computation

Correctness proof and full batched betweenness centrality algorithm in the paper

8Manuel Then | Efficient Batched Distance and Centrality Computation

Reverse MS-BFS and Vertex Predecessors

Motivation: Graph Centrality

Background: MS-BFS

Centrality in unweighted graphs

Centrality in weighted graphs

Evaluation

Summary and Future Work

9Manuel Then | Efficient Batched Distance and Centrality Computation

Overview

Problem: MS-BFS cannot be used for distance computation in weighted graphs

Batched Algorithm Execution

• Run algorithm from multiple vertices at the same time

• Synchronize algorithm executions

• Share common computations and data accesses

• Adapt memory layout

10Manuel Then | Efficient Batched Distance and Centrality Computation

Batched Algorithm Execution

Batched Bellman-Ford algorithm
Weighted all pairs shortest path

Batched algorithm execution
• … improves temporal and spatial locality
• … facilitates vectorized computation

11Manuel Then | Efficient Batched Distance and Centrality Computation

Batched Algorithm Execution: Example

Non-batched execution Batched execution

Comparison of common weighted distance algorithms:

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●

●
●

●
●

●
●

●
●

●
●

●●

●
●

●
●

●
●

●
●

●
●

●●

●
●

Kronecker, 5 weights Kronecker, 10 weights Kronecker, 100 weights

LDBC, 5 weights LDBC, 10 weights LDBC, 100 weights

100

10 k

1 M

100

10 k

1 M

10 k 1 M 10 k 1 M 10 k 1 M
Graph size (number of vertices)

R
un

tim
e

(in
 m

illi
se

co
nd

s)

Execution
●

●

Batched
Non−batched

Algorithm
● Bellman−Ford

Dijkstra

12Manuel Then | Efficient Batched Distance and Centrality Computation

Batched Weighted Distances

Closeness Centrality
• Batched execution allows vectorizing the CC computation from the distances

Betweenness Centrality
• Requires global distance ordering
• Implicit predecessor computation
• Vectorized numeric computations

13Manuel Then | Efficient Batched Distance and Centrality Computation

Weighted Centralities

Motivation: Graph Centrality

Background: MS-BFS

Centrality in unweighted graphs

Centrality in weighted graphs

Evaluation

Summary and Future Work

14Manuel Then | Efficient Batched Distance and Centrality Computation

Overview

Algorithms implemented as stand-alone programs
• C++14, GCC 5.2.1
• No framework dependencies

Synthetic datasets
• LDBC Social Network friendships graph
• Kronecker graph, edge factor 32

Real-world datasets
• Citeseer (384k verts), DBLP (1.3M verts), Wikipedia (1.9M verts), and Hudong (3M verts)
• KONECT repository

Evaluated on dual Intel Xeon E5-2660 v2, 20x 2.2GHz, 256GB

15Manuel Then | Efficient Batched Distance and Centrality Computation

Evaluation: Setup

●

●

●

●
●

●

●

● ●
●●●

●

●

●

●

●● ●

●

●●●
●

●●
●

●
●

●

●

●

Closeness Centrality, Unweighted Closeness Centrality, Weighted

Betweenness Centrality, Unweighted Betweenness Centrality, Weighted

1

2

5

10

1

2

5

10

1 4 8 16 32 64 128 256 1 4 8 16 32 64 128 256
Number of concurrent executions

Ba
tc

he
d

al
go

rit
hm

 e
xe

cu
tio

n
sp

ee
du

p

Dataset
● LDBC 100

Kronecker S21
Citeseer
DBLP
Hudong
Wikipedia

16Manuel Then | Efficient Batched Distance and Centrality Computation

Evaluation: Number of Concurrent Executions

● ●

●

●
●●

●

●

● ●
● ●

●

●

●

●

LDBC, Unweighted LDBC, Weighted

10 k 100 k 1 M 10 k 100 k 1 M

1

2

5

10

Graph size (number of vertices)

Ba
tc

he
d

al
go

rit
hm

 e
xe

cu
tio

n
sp

ee
du

p

Algorithm
● Closeness Centrality

Betweenness Centrality

vs. Brandes's BC

WeightCount
●

●

1

10

17Manuel Then | Efficient Batched Distance and Centrality Computation

Evaluation: Graph Size Scalability

●●
●

●
●●

●
●●

●
●●

●
●●

●
●
●

●
●●

●●

LDBC, Weighted

10 k 100 k 1 M

1

2

5

Graph size (number of vertices)

Ba
tc

he
d

al
go

rit
hm

 e
xe

cu
tio

n
sp

ee
du

p

Algorithm
● Closeness Centrality

Betweenness Centrality

WeightCount
●

●

●

5

10

100

18Manuel Then | Efficient Batched Distance and Centrality Computation

Evaluation: Number of Edge Weights

Batched algorithm execution
• Shares common data accesses,
• Avoids/vectorizes computations, and
• Significantly reduces graph algorithm execution times

Improved centrality computation performance
• Unweighted by up to 20x (closeness) and 6x (betweenness)
• Weighted by up to 7x (closeness) and 3x (betweenness)

Details and all algorithms are listed in the paper

Future work:
Apply batched execution to further classes of algorithms

19Manuel Then | Efficient Batched Distance and Centrality Computation

Summary

