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Goal: Find the most central vertices
• Influencers in social networks
• Critical routers in computer networks

Centrality measures
• Degree: degree centrality, PageRank
• Distances: closeness centrality
• Paths: betweenness centrality

Challenges
• Algorithmic complexity
• Random data access
• Redundant computation, hard to vectorize
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Graph Centrality



Unweighted closeness centrality build on BFSs

Goal: Run multiple BFSs concurrently and share common traversals
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Challenges Visualized



BFS traversals using bit operations
∀v∈V: ∀n∈neighbors(v): next[n] = visit[v] & ~seen[n]

Used to win SIGMOD 2014 programming contest
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Background: Multi-Source BFS

[1] Then et al., The More the Merrier: Efficient Multi-source Graph Traversal, VLDB 2015
[2] Kaufmann et al., Parallel Array-Based Single- and Multi-Source Breadth First Searches on Large Dense Graphs, EDBT 2017



Motivation: Graph Centrality

Background: MS-BFS

Centrality in unweighted graphs

Centrality in weighted graphs

Evaluation

Summary and Future Work
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Overview



Distance-based centrality metric
• Central vertices have a low average geodesic distance to all other vertices

MS-BFS from all vertices
• No need to store distances

Efficient batch incrementer
• Significantly improves the performance of counting discovered vertices
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Unweighted Closeness Centrality



Path-based centrality metric
• Central vertices are part of many shortest paths

Naïve computation very costly. We use Brandes’s algorithm

Forward step can leverage MS-BFS
• Batching improves locality
• Allows vectorization of numeric computations

Challenges: Backward step requires
• Reverse MS-BFS
• Vertex predecessor calculation
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Unweighted Betweenness Centrality

[3] Brandes, A Faster Algorithm for Betweenness Centrality, Journal of Mathematical Sociology, 2001



Reverse BFS: traverse graph in inverse BFS order
• Stacks unsuited for MS-BFS

Reconstruct traversal order forward iteration frontiers

Batched vertex predecessor computation

Correctness proof and full batched betweenness centrality algorithm in the paper
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Reverse MS-BFS and Vertex Predecessors



Motivation: Graph Centrality

Background: MS-BFS

Centrality in unweighted graphs

Centrality in weighted graphs

Evaluation

Summary and Future Work

9Manuel Then | Efficient Batched Distance and Centrality Computation

Overview



Problem: MS-BFS cannot be used for distance computation in weighted graphs

Batched Algorithm Execution

• Run algorithm from multiple vertices at the same time

• Synchronize algorithm executions

• Share common computations and data accesses

• Adapt memory layout
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Batched Algorithm Execution



Batched Bellman-Ford algorithm
Weighted all pairs shortest path

Batched algorithm execution
• … improves temporal and spatial locality 
• … facilitates vectorized computation
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Batched Algorithm Execution: Example

Non-batched execution Batched execution



Comparison of common weighted distance algorithms:
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Batched Weighted Distances



Closeness Centrality
• Batched execution allows vectorizing the CC computation from the distances

Betweenness Centrality
• Requires global distance ordering
• Implicit predecessor computation
• Vectorized numeric computations
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Weighted Centralities



Motivation: Graph Centrality

Background: MS-BFS

Centrality in unweighted graphs

Centrality in weighted graphs

Evaluation

Summary and Future Work
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Overview



Algorithms implemented as stand-alone programs
• C++14, GCC 5.2.1
• No framework dependencies

Synthetic datasets
• LDBC Social Network friendships graph
• Kronecker graph, edge factor 32

Real-world datasets
• Citeseer (384k verts), DBLP (1.3M verts), Wikipedia (1.9M verts), and Hudong (3M verts)
• KONECT repository

Evaluated on dual Intel Xeon E5-2660 v2, 20x 2.2GHz, 256GB
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Evaluation: Setup
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Evaluation: Number of Concurrent Executions
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Evaluation: Graph Size Scalability



●●
●

●
●●

●
●●

●
●●

●
●●

●
●
●

●
●●

●●

LDBC, Weighted

10 k 100 k 1 M

1

2

5

Graph size (number of vertices)

Ba
tc

he
d 

al
go

rit
hm

 e
xe

cu
tio

n 
sp

ee
du

p

Algorithm
● Closeness Centrality

Betweenness Centrality

WeightCount
●

●

●

5

10

100

18Manuel Then | Efficient Batched Distance and Centrality Computation

Evaluation: Number of Edge Weights



Batched algorithm execution
• Shares common data accesses,
• Avoids/vectorizes computations, and
• Significantly reduces graph algorithm execution times

Improved centrality computation performance
• Unweighted by up to 20x (closeness) and 6x (betweenness)
• Weighted by up to 7x (closeness) and 3x (betweenness)

Details and all algorithms are listed in the paper

Future work:
Apply batched execution to further classes of algorithms
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Summary


