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Detection and Implicit Classification of Outliers via Different

Feature Sets in Polygonal Chains

Michael Singhof1, Gerhard Klassen2, Daniel Braun1, Stefan Conrad1

Abstract: Many outlier detection tasks involve a classiĄcation of outliers of diferent types. Most
standard procedures solve this problem in two steps: First, an outlier detection algorithm is carried out,
which is normally trained on outlier free data, only, since the samples of outliers are limited. Second,
the outliers detected in that step, are classiĄed with a conventional classiĄcation algorithm, that needs
samples for all classes. However, often the quality of the classiĄcation is lowered due to the small
number of available samples.

Therefore, in this work, we introduce an outlier detection and classiĄcation algorithm, that does not
depend on training data for the classiĄcation process. Instead, we assume, that diferent kinds of
outliers are inferred by diferent processes and as such should be detected by diferent outlier detection
approaches. This work focuses on the example of outliers in mountain silhouettes.

Keywords: Anomaly & Outlier Detection, ClassiĄcation, Image Segmentation

1 Introduction

The detection of outliers in a data set occurs in many contexts, ranging from clustering
algorithms such as DBSCAN [Es96] to credit card fraud detection [CS98, Ch99], function
tests of aircraft engines [Ab16], or the detection of cyber attacks [La04, CBG12] and many
other application areas. In some cases, like clustering, it is suicient to just erase any point
that is either noise or an anomaly. In other cases, like function tests, the outliers are of
primary interest. A general problem in those cases is the fact, that normally, none or very
few outlier instances are known. Therefore, outlier detection is mostly treated as a single
class problem, where for each data point it is rated, whether that point is normal or not. If it
is not judged as being normal, it is treated as an outlier.

In some cases, however, a further classiĄcation of outliers is necessary. In [BSC16], we
presented a system that is able to Ąnd a mountainŠs silhouette in a photo. It utilises an outlier
detection algorithm to get rid of errors during the segmentation step, that belong to diferent
classes. In this case, it is important to diferentiate between these classes, because errors of
diferent kinds get corrected in diferent ways.

The remainder of this paper is structured as follows: Chapter 2 explains and motivates the
problem we try to solve, chapter 3 gives an overview of related work. In chapter 4 we describe
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our approach to outlier detection and how it can be used for an implicit classiĄcation. We
evaluate our approach in chapter 5 and Ąnally draw a conclusion in chapter 6.

2 Motivation and Problem Description

In this work, we present an approach to outlier detection and classiĄcation on polygonal
chains, that are given by an image segmentation algorithm. The aim of this framework as
a whole is the automatic annotation of mountain photos, by detecting the silhouette of a
mountain in a given image and then comparing it to a set of reference silhouettes.

During the segmentation step several problems can occur that might obscure the silhouette:
First, there can be obstacles in the photo that are in front of the mountain, such as trees,
buildings or persons. In order to extract an exact silhouette it is necessary to take note of
such obstacles and ignore them in the silhouette matching step. Second, segmentation errors
can occur that can by caused by a low contrast between sky and foreground. This happens
if clouds occur close or overlapping to the silhouette, if snowĄelds appear next to light
sections of the sky or for other reasons where contrast between sky and foreground is minor.
Some of these errors are shown in Ągure 1, that has obstacles in the form of trees on the left
side and segmentation errors due to low contrast on the right hand side.

Fig. 1: Examples for diferent errors in a mountain silhouette.

Since we use an adaptive segmentation algorithm, it is possible to correct errors if we
detect them. Figure 2 gives an overview of the architecture of the segmentation module.
In general, a grid is laid over the image. For the initial segmentation, the same parameters
are used for every cell, although these can be changed during the adaptive process. Then,
the segmentation algorithm computes a silhouette from the image, which is passed to the
outlier detection step. When no outliers are found, the silhouette is inferred as clean and the
algorithm terminates. In the case that outliers are found, these are passed to the classiĄcation
module. If an outlier gets classiĄed as being an obstacle, it is removed by replacing it by a
straight line. Otherwise, if an outlier is classiĄed as a segmentation error, it is passed to the
segmentation module. There, the parameters for the afected grid cells are changed to better
accommodate the local circumstances.

This work concentrates on the detection and classiĄcation of outliers. A general problem
with outlier detection, as mentioned in the introduction, is the fact, that in most cases no
exhaustive collection of examples for all shapes of outliers exists. This is the case with
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Fig. 2: Flow diagram of adaptive image segmentation.

our problem, too. Therefore, our outlier detection algorithm is trained on normal data,
only. However, for a regular classiĄcation samples of all classes are needed. One can argue
here, that for most outliers that are found, a small collection of examples is suicient to
diferentiate between the given classes. In previous work [BSC16], we have used such a
solution to acceptable results.

In our current approach, that has been outlined in [SBC16], we only use the geometric
properties of the silhouette to depict outliers. In this work, however, we want to implicitly
classify the detected outliers by using diferent sets of features for the diferent types of
outliers. Our notion is, that those diferent outliers are produced by diferent mechanisms
and thus can be detected by looking at diferent attributes: On one hand, segmentation
errors occur in regions with unusual low contrast along the silhouette. On the other hand,
obstacles usually have borders to the sky that are as sharp as the rest of the silhouette in the
surroundings of the obstacle but have unusual forms for mountain silhouettes.

3 Related Work

There is an abundance of work on outlier detection, beginning with statistical models
[Ha80, BL94] and general deĄnitions of outliers [BC83] to very specialised applications of
outlier detection. Some of them have been already mentioned in the introduction such as
[CS98, La04, CBG12, Ab16]. Since, to our knowledge, there is no work on outlier detection
on polygonal chains in general, the Ąeld that is closest related to ours is outlier detection on
time series. There are two major problems for outliers in time series, namely the Ąnding of
change points and the Ąnding of unusual subseries. A change point is a certain point in time,
where the time series changes its behaviour drastically. This has, among others, researched
in [FP99, KS09]. Well known approaches to the problem of Ąnding unusual parts of time
series include HotSax[KLF05] and specialisations of it such as [PLD10, BA11b, KA12].

The basic idea of HotSax is Ąnding the strongest discord. A discord is a subsequence of a
time series, that does not Ąt the general shape of the time series it lies in. HotSax computes
the one most unusual part of a time series consisting of k points where k is given by the
user. In contrast to this, for a given polygonal chain, the target of this work is to Ąnd all
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outliers of arbitrary lengths for a given polygonal chain, including the possibility of not
Ąnding an outlier at all if there is none in the data.

The target of mountain recognition was Ąrst tackled in [Ba12]. Together with this paper, a
corpus of 203 annotated images was released, which is often used in this Ąeld. In contrast
to our approach, the approach by Baatz et al. requires human intervention in some cases.
Kim et al. [Ki11] introduced a skyline detection algorithm that uses a Canny edge detection
[Ca86],Ąrst, and then Ąlters the resulting edges in order to get silhouette edges, only. One
disadvantage of this algorithm is the fact, that it does not Ąnd a continuous silhouette but in
most cases only parts of it. The authors of [Ah15] use a combination of diferent techniques,
both edge-less and edge-based in order to come up with a skyline. Baboud et al. [Ba11a]
use a similar technique in order to annotate mountains, that relies on GPS coordinates and
does not extract a skyline or silhouette in particular.

4 Outlier Detection and Classification

As mentioned in section 2, the segmentation part of our framework passes a silhouette in the
form of a polygonal chain to the outlier detection part. This gets searched for untypical parts
and then those parts are given to the classiĄcation module. In this section, we describe the
current approach two-dimensional approach and introduce changes to the work presented in
[BSC16, SBC16], namely the addition of further dimensions and the proposal of merging
strategies.

To understand the nature of outliers, we Ąrst have to introduce the construct of the silhouette.
Visually speaking, the silhouette is the border in the image, that separates the sky from the
foreground, or in our case, that separates the mountain from everything above the mountain,
that might include objects in front of the mountain.

Formally, we deĄne a silhouette as follows:

Definition 1. Let S = (p1, . . . , pn) be a sequence of points pi = (xi, yi) ∈ [0, xmax]×[0, ymax]

for an image of the size of xmax × ymax pixels. S is called a silhouette if the points p1 and pn
lie on the borders of the image.

Given a silhouette S, an outlier is a sub-sequences O = (pi, . . . , pj), 1 ≤ i < j ≤ n, that
marks an unusual part of the silhouette. This unusualness is expressed by an anomaly score
on single points of a silhouette. The bigger that anomaly score is, the more unusual a point
is. An outlier consists of a series of points that each have a high anomaly score.

4.1 Outlier Detection

After the previous section introduced a general idea of the term outlier, in this section we
describe how outliers are computed. Figure 3 gives an overview over the outlier detection
process.



Detection and Implicit ClassiĄcation of Outliers via Diferent Feature Sets in Polygonal Chains 241

Silhouette
Convert silhou-
ette to relative

silhouette

Compute anomaly
scores for

every vertex
Find outliers Outliers

Reference
histograms,

window
length

µ, σ ,
τin ,

τout , l

Contrast-x ,
Contrast-y ,
Grad-dir.

Fig. 3: Flow diagram of outlier detection.

It can be seen there, that the process is essentially split in three steps; the Ąrst of which is the
conversion of a silhouette S to a so-called relative silhouette RS. In contrast to a silhouette,
in a relative silhouette we give the coordinates of every vertex relatively to the coordinates
of its predecessor in the silhouette. In our case we chose a polar coordinate like notation.
We also add additional information to the silhouette, namely contrast values in x and y

direction, as well the gradient direction:

Definition 2. Let S = (p1, . . . , pn) be a silhouette. RS = (v1, . . . , vn) is called the relative

silhouette of S if v1 = (0, 0, cx1, cy1, g1) and for each vi = (sli, ai, cxi, cyi, gi) for i ∈ [2, n],
sli = |pi − pi−1 | denotes the length of the the line segment between pi and pi−1, ai denotes
the angle between that line segment and the x-axis, cxi and cyi give the contrast at the point
pi in direction of the x, respectively y axis, and gi denotes the contrast direction at point pi .

The computation of the relative silhouette for a given silhouette is straight forward and can
be carried out in O(n), for n the number of points in the silhouette S. This is done in order
to ensure, that similar structures in the silhouette that lie in diferent parts of the image are
represented in a similar fashion, without the need to do any further computations.

The second step in the process is the computation of the anomaly scores of the single
vertices of the relative silhouette RS. As can be seen in Ągure 3, in this step, additional
information is needed, namely reference histograms and a parameter called window length.
A relative silhouette Ű or a part of one Ű can be easily transformed into a histogram. The
histogramŠs bins consist of up to Ąve dimensions, depending on the chosen features. The
reference histograms are histograms derived from error free silhouettes. More on their
computation can be found in [SBC16] for the two dimensional case. Computation for other
numbers of dimensions are analogous. Let us assume that we have k reference histograms
H1
re f
, . . . ,Hk

re f
. Then we use a sliding window with the size given by the parameter window

size. For every window we compute the corresponding histogram H and with that the
distance to the reference histograms as d = min1≤i≤k dist(H,Hi

re f
), for any histogram

distance function dist.

We store d for every vertex that has been part of the sliding window so that every vertex vi

gets a collection Di of distance values.

Definition 3. Let Di be the collection of distance values for a point vi . Then we call
an(vi) =

1
|Di |

∑
d∈Di

d the anomaly score of vi .
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As with the silhouette conversion, it is obvious, that the anomaly scores can be computed
in O(n), since the number of bins of the histograms and therefore the histogram distance
function are independent of the number of points in the silhouette.

The third and last step is the actual outlier detection. Again, as shown in Ągure 3, some
additional parameters are necessary. Of these, µ is the mean of the anomaly score distribution
computed on the reference data and σ is the standard deviation. These are computed together
with the reference histograms from the previous step. In contrast to this, τin, τout and l are
parameters given by the user. Here, τin and τout are thresholds for the anomaly scores and l

is the minimal number of points that an outlier has to consist of.

Definition 4. Let RS = (v1, . . . , vn) be the relative silhouette of an image with corresponding
anomaly scores an(vi) for vertex vi , reference anomaly score distribution mean µ and standard
deviation σ and two thresholds 0 < τout < τin.

Then we call vi a weak anomaly if an(vi) ≥ µ + τout · σ and a strong anomaly if
an(vi) ≥ µ + τin · σ.

We use a double threshold technique since our observations show that on one hand, if we
chose only one relatively high threshold, the detected outliers would often be too small.
On the other hand, if we chose a single low threshold, we would Ąnd many false positives.
Therefore, due to the double thresholds, we can restrain the number of detected outliers by
τin but are able to expand those outlier by choosing a lower value for τout .

We can now deĄne an outlier in our context as given in [BSC16]:

Definition 5. Let l > 0, and RS = (v1, . . . , vn) be a relative silhouette. We call o =

(vi, . . . , vj) an l-outlier if the following is true:

1. For all vk , i ≤ k ≤ j, it holds that vk is a weak anomaly.

2. There exist m1,m2 ∈ {i, . . . , j} such that m2 − m1 ≥ l and for all vk , m1 ≤ k ≤ m2, it holds
that vk is a strong anomaly.

An outlier o = (vi, . . . , vj) is called a maximum l-outlier if and only if neither (vi−1, . . . , vj)

nor (vi, . . . , vj+1) are l-outliers.

Our goal is to Ąnd all maximum outliers in the silhouette. This is done by iterating over all
vertices in the silhouette and then react as noted in table 1. There, sout is a variable that
stores the position of a possible start of the outer part of an outlier, or n f if no start has been
found yet, sin stores the possible start of an inner part of an outlier, and ein stores the end of
an inner outlier. The minimum inner length is given by l and vi denotes the current vertex.

This can be done in linear time as well, so that the whole outlier detection algorithm can be
executed in O(n).
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Status of variables Status of current vertex vi

sout sin ein no anomaly weak anomaly strong anomaly

n f n f n f Ů set sout = i set sin = sout = i

found n f n f set sout = n f Ů set sin = i

found i − sin ≤ l n f set sout = sin = n f set sin = n f Ů

found i − sin > l n f set oin = i, save o set ein = i Ů

found i − sin > l found save o Ů Ů

Tab. 1: Decision matrix for outlier detection.

Number of features Used features Outlier type

2 Length, Angle Obstacle

3 Contrast x, Contrast y, Gradient dir. Segmentation

5 Length, Angle, Contrast x, Contrast y, Gradient dir. Segmentation

Tab. 2: Used feature set and their implication on outlier types.

4.2 Merging and Classification of Outliers

If only one feature set is used for the outlier detection, overlapping outliers do not occur,
since an outlier is expanded Ąrst. That means, we enlarge an outlier, Ąrst, before we proceed
with searching for the next outlier in the next part of the silhouette. However, if we carry out
the outlier detection for diferent feature sets, in order to use an implicit classiĄcation, it is
possible for outliers to overlap. We then have to decide, how to deal with those outliers and
which class they should have.

The basic assumption for the classiĄcation is, that the feature set in which an outlier occurs,
indicates the type of outlier. As described in section 2, outliers in the contrast features hint at
segmentation errors while outliers with normal contrast but unusual shape hint at obstacles.
Table 2 gives an overview of the feature sets we use and what they mean for the outlier
types.

We have developed three strategies for the merging of outliers. The Ąrst is called ŞMergeŤ
and, for a set of overlapping outliers creates an outlier that begins at the lowest start index
and ends at the highest end index. The type is then computed as the type with the longest
inner outlier, i.e. the part of the outlier, that consists of strong anomalies, of the involved
outliers. The second strategy, ŞMerge to SegmentationŤ, depicts the merged outlier as being
a segmentation error if at least one outlier from a segmentation error feature set is involved.
Finally, ŞSplit and MergeŤ is the most complex strategy. Here we look, if the inner parts
of outliers intersect. If this is the case, we merge the outliers with the ŞMergeŤ strategy.
Otherwise, we split the combined outlier at the middle between the inner parts, if both
outer outliers are reaching over the middle. Otherwise, the split is performed as close to
the middle as possible. The single parts of the outlier then get merged and classiĄed by the
ŞMergeŤ strategy.
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5 Evaluation

The evaluation is carried out on a data set, which consists of 3580 outlier vertices forming 114
outliers that have been manually marked in 14 silhouettes. The silhouettes are automatically
detected by the segmentation part of AdaMS, that is described in [BSC16], although without
using the adaptive improvement. This is in order to ensure typical outliers for our application
scenario. All outlier detection algorithm variants have been trained on 48 mostly outlier free
silhouettes. Clustering has been carried out 1000 times and the clustering with the lowest
quadratic distances has been chosen, and the number of clusters and reference histograms k

has been set to 30.

Found outliers of length

Method (0, 5] (5, 10] (10, 20] (10, 50] > 50 Total Prec. Recall F1

2d 6 21 12 19 14 72 70 70 70

3d 4 11 11 10 14 50 57 66 61

5d 15 36 22 21 15 109 52 81 66

Combined3 8 26 19 19 15 87 58 88 73

Combined5 15 38 23 21 15 112 51 88 70

Tab. 3: Comparison of single and combined approaches.

Table 3 shows the detection results for the single feature sets and the feasible combinations.
It can be seen here, that the two dimensional method yields the best results in respect to
precision and F1 measure, while the Ąve dimensional approach Ąnds the most outliers and
has the highest recall of the single feature sets. The three dimensional approach has the
worst results, however this is as expected, since it is only able to detect outliers that have
very unusual contrast values, i.e. segmentation errors. The Ąve dimensional approach, is
best suited to Ąnd most, since it is the only approach that uses all kinds of features by itself.

Combined3 gives the results for the combination of the two and three dimensional feature
sets. It can be seen here, that the number of hit outliers rises signiĄcantly in comparison
to the single methods, so that this combination is feasible. Recall reaches 88%, while
precision is at 58%, resulting in the best F1 value of all tested approaches. As expected,
the combination of the two and the Ąve dimensional feature set is not as good in respect to
precision, since for the Ąve dimensional feature set on its own, precision is already rather
low. On the other hand, the number of detected outliers, especially shorter ones is nearly
complete, as nearly all outliers have been found.

Strategy Right Wrong Both

Merge 51 25 0

Merge to Seg. 51 25 0

Split and Merge 43 31 3

(a) Two features and three features.

Strategy Right Wrong Both

Merge 69 31 1

Merge to Seg. 75 24 0

Split and Merge 68 41 11

(b) Two features and Ąve features.

Tab. 4: ClassiĄcation results for combined approaches.

Tables 4a and 4b show the classiĄcation results for the hit outliers for the Combined3 and
Combined5 approach, respectively. Since the detection is not always exact, we declare a
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detected outlier as classiĄed correctly, if it intersects with an manually marked outlier of the
same type, and we declare it incorrect if it does intersect with an marked outlier of the other
type.

The results show, that, without any training data, there are up to 75% right classiĄcations
with the ŞMerge to SegmentationŤ merging strategy and better results for the combination
with the Ąve features approach. The lower classiĄcation rate for Combined3 seems to be due
to the fact, that in some cases, the detected silhouette around obstacles is not entirely exact.
As can be seen in Ągure 1, at some points the silhouette is inside the sky. So technically
there is a slight segmentation error, that lowers the contrast, over the obstacle. We expect,
that in the full adaptive context, in a Ąrst step this would be Ąxed and afterwards, the real
obstacle would be detected as such.

6 Conclusion

In this work, we have argued, that in cases, where an outlier detection problem and an
outlier classiĄcation problem, are tackled, it might be more feasible to instead regard the
problem as multiple outlier detection problems and carry out the classiĄcation implicitly
by the outlier detection algorithm, that detects a given outlier. For the example of outliers
in silhouettes of segmentations of mountain images, we have shown, that not only such a
classiĄcation is possible, but that the usage of more than one outlier detection variant even
increases the total number of detected outliers.

We believe, that the basic idea of our approach, namely the usage of separate outlier
detection methods and an implicit classiĄcation based on those, is adaptable to a other
outlier detection problems. Future work therefore will focus on testing such frameworks on
other problems.
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