Metadata Management for Data Integration in Medical Sciences - Experiences from the LIFE Study -

<u>Toralf Kirsten</u>, Alexander Kiel, Mathias Rühle, Jonas Wagner

LIFE Reserach Center for Civilization Diseases University of Leipzig

BTW, Stuttgart, 08.03.2017

Leipziger Forschungszentrum für Zivilisationserkrankungen

Data in Medical Sciences

- Clinical Care
 - Patients with dedicated problems in health
 - Many unstructured data, e.g., anamneses, findings, discharge reports, images
 - Structured data captured or derived from unstructured data: diagnoses, procedures etc. → goal: mostly billing
- Medical reserach projects
 - Recruited patients/probands
 - Determining a specific scientific goal
 - Mostly structured data + complex types (genetic data, images, ...)

LIFE Research Center

- Center at the Medical Faculty, Univ. of Leipzig
- <u>Goal</u>: Prevalences, risk factors and development of common civilization diseases
- Different epidemiological studies
 - Two population based cohorts (inhabitants of Leipzig)
 - Three disease specific cohorts
- Complex data capturing processes by multiple hospitals and ambulances
 - Mostly structured data capturing
 - Complex data, e.g., omics data

Multiple Input Forms (10/'16)

Assessment Type	# Assess- ments	avg(Input Forms / Assessment)	Items	Avg(Items / Assessment)
Interview	317	3	18,980	59.9
Questionnaire	217	2	16,740	77.1
Physical Examination	78	2.5	10,606	136
Laboratory	114	1.5	2,110	18.5
Total	> 850	2.4 > 1,700	> 51,000	66.7 (8 - 844)

- Evolution of input forms within a single input system
- Multiple input systems: Online ~, paper based data capturing, spreadsheets, desktop databases, ...

Evolution of Input Forms: Example

Änderungen

Evolution of Input Forms

- Problem: How form modifications can be managed with implications on data integration and later data analyses ?
- Two alternatives
 - Single evolving input form (per input system)
 - <u>Multiple input forms</u>: New form whenever a relevant modification need to be implemented

Requirements

- Data capturing and analysis in parallel
- Large set of analysis projects (> 350, Jan. 2017)
- Consider data provenance
- Harmonization of schemas according to evolution of input forms and multiple input systems
 - Study Items (questions, parameters)
 - Code lists (coding of answers)
- Efficiency
 - Automatic data transfer & transformations
 - Dynamic extension of target schema (research database)
- Further requirements: "Data descriptions" used in analysis, Metadata for query generation, reporting, curation ...

Problem: Integration of Input Forms

- Harmonization of study items
- Schema examples

No application of matching techniques on schema level – mostly names of schema elements are technically induced ₉

Mapping based Approach

Two step realization

1)Extension of target schema T for each new assessment – first version (first input form)

2)Mapping all further forms (vi > 1) to the succeeding form and reuse existing schema mappings M

• <u>Central Idea</u>: Transforming schema mapping problem into form mapping problem

Step 1: Mapping of first Form Version

Derive schema mapping $\boldsymbol{M}_{\boldsymbol{S}_{V1},\boldsymbol{S}_{T}}$ by mapping composition

Step 2: Mapping of Form Version > 1

Form Matching

- Match process taking item description into account: Question, parameter name
- Different matcher calculating similarity between two items, e.g.,
 - String based similarity: n-gram, Levenshtein, ...
 - Set based similarity: Jaccard, ...

Blocking

- <u>Basic Idea</u>: Reducing the number of item item comparisons without loosing quality
- Different blocking strategies

• In LIFE

- Recurring item groups, e.g., questions according to each drug (medication)
- Item groups typically unmodified in succeeding forms
- Block \rightarrow item group (block key \rightarrow group name)
 - Comparing items of two dedicated blocks belonging to succeeding input forms having the same block key

Data Type Mappings

- Mapping data types when extracting data from source system and store them into a target DB
 - Different DBMS specific data types, e.g., TEXT (MySQL), VARCHAR2, LONG (ORACLE)
 - Implementation: type [length|precision[, scale]]
 e.g., VARCHAR2 (20), INT(1), DECIMAL(5, 3)
- Building data type patterns
- Map data type patterns of sources to target DB

Source Data Type Pattern (MySQL) Target Data Type Pattern (ORACLE)

VARCHAR(<LENGTH>) → VARCHAR2(<LENGTH>) TEXT → CLOB

Data Provenance

- Multiple input forms per assessment
- Key question in LIFE: What data have been produced by which input system – by which input form F_x?
- <u>Idea</u>:
 - Associate an identifier for each form in MD
 - Represent form identifier in target table as instance

Evaluation

- Set up
 - Use all checked mappings as gold standard
 - Map all input forms per assessment in chronologic order
 - Evaluate match quality no user adaptations of descriptions, aliasing etc.

Mappings	Assessments	avg (Items per Assessment)	min - max(Items per Assessment)
1	528	47.5	6 - 789
2	138	78.9	6 - 844
3	62	59.7	9 - 279
4	37	101.9	19 - 637
5	31	73.6	16 - 463
6	22	74.6	19 - 411
7	22	58.9	17 - 425
8	12	83.6	20 - 467
9	2	65.6	27 - 197
10	1	102.9	83 - 119

1,166 forms 327 assessments

Evaluation Results: Quality

• Trigram-Jaccard (string) with best precision but worsest recall

Evaluation Results: Blocking

- Different blocking strategies
 Brute force = vector of all items
- Brute force = vector of all items
- Most reduction when blocking based on item groups
- Reduction factor 1,838
- No significant loss of quality when blocking mode is used

Metadata Repository

- Sometimes called data dictionary
- Central collection of
 - Sources MD
 - Assessments and input forms, code lists, data types
 - Mappings on different levels
- Used for
 - Extraction, transformation & loading
 - Query generation
 - Reporting
 - Curation (in close connection with R)

Conclusions

- LIFE: Epidemiological study with large set assessments
 - Evolving input forms (multiple forms per assessment)
 - Different input systems
- Need for harmonization
- Matching input forms \rightarrow derive schema mappings

ankyou

- Automatic generation
- Manual check & adaptation (if necessary)
- Scientific evaluation
- Running in production mode for 5y