
B. Mitschang et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2017),

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 123

The STARK Framework for Spatio-Temporal Data Analytics

on Spark

Stefan Hagedorn1, Philipp Götze1, Kai-Uwe Sattler1

Abstract: Big Data sets can contain all types of information: from server log files to tracking
information of mobile users with their location at a point in time. Apache Spark has been widely
accepted for Big Data analytics because of its very fast processing model. However, Spark has
no native support for spatial or spatio-temporal data. Spatial filters or joins using, e.g., a contains
predicate are not supported and would have to be implemented inefficiently by the users. Also, Spark
cannot make use of, e.g., spatial distribution for optimal partitioning. Here we present our STARK
framework that adds spatio-temporal support to Spark. It includes spatial partitioners, different modes
for indexing, as well as filter, join, and clustering operators. In contrast to existing solutions, STARK
integrates seamlessly into any (Scala) Spark program and provides more flexible and comprehensive
operators. Furthermore, our experimental evaluation shows that our implementation outperforms
existing solutions.

1 Introduction

Spark has been widely accepted as the data processing platform for big data sets providing

better performance than classic Hadoop MapReduce as well as a more powerful expressive-

ness due to its large set of operators, support for cyclic data flow, and language-integrated

queries. Spark supports a rather general data model, which allows to easily create programs

for processing any type of data. Typically, data is loaded as text files and converted into

their respective type of the chosen programming language or custom classes to represent

complex data types.

One important class of complex data types are spatio-temporal data. For example, such

data is created by sensors that record the location or movement of users or objects that

periodically announce their current position. Another example for spatio-temporal data

are event data, describing “something that happens at some place at some time”. Event

data is not generated by sensors only, but can also be found in many textual sources like

news articles, blogs, tweets, and social media. Here, so-called taggers detect, extract, and

normalize spatial and temporal expressions from the sources and prepare the event data for

further analysis steps.

A typical use case for analyzing spatio-temporal event data is to find correlated events in

terms of their spatial and/or temporal components, i.e. if they are close to each other – or to a

reference object – in time and space. Example applications are among others recommenders

for events (e.g., in the cultural domain or for location-based services), mining crime data

1 TU Ilmenau, Databases & information systems Group, Ilmenau, Germany, first.last@tu-ilmenau.de

124 Stefan Hagedorn, Philipp Götze, Kai-Uwe Sattler

(e.g., for predictive policing or homeland security) or political news (e.g., from the GDELT

data set).

When event data is extracted in an automated process from large document repositories

or the Web, event analysis is an interactive and exploratory process dealing with huge

and often unknown data sets. Loading, indexing, and processing this data in a spatial or

relational DBMS is often too time-consuming and requires a lot of preprocessing. Instead,

tools like Apache Spark can directly process this data and can be used to implement

complex analytical pipelines step-by-step. However, because Spark does not provide native

support for spatial or temporal data, users have to define custom classes to represent spatial

and/or temporal features and additionally implement special operators for spatio-temporal

processing. Furthermore, efficient processing of large data sets requires to exploit data

parallelism by partitioning the data accordingly, e.g., on its proximity, which is also not

supported directly in Spark.

In order to address these challenges, a few extensions to Spark have been proposed recently.

However, these solutions lack in an intuitive and integrated DSL, in support for spatio-

temporal instead of only spatial data, as well as in a comprehensive and complete set of

operators.

Our contribution is the following:

1. We present the STARK2 framework for spatio-temporal data processing,

2. that provides an intuitive DSL and seamless integration with Apache Spark.

3. STARK includes an expressive set of operators, including filters, joins, and clustering,

4. and it supports spatial partitioning and indexing for efficient computations.

The remainder of the paper is organized as follows. After a discussion of related work

in Sect. 2, we identify important requirements of spatio-temporal processing in Spark in

Sect. 3. We then describe the architecture of the STARK framework in Sect. 4, followed

by details for partitioning and indexing in Sect. 5. In Sect. 6 we show the internals of the

spatial operators. Results of our experimental evaluation and comparison with GeoSpark

and SpatialSpark are presented in Sect. 7. Finally, we conclude the main results of our work

in Sect. 8 and point out to future work.

2 Related Work

Spatial data support has been implemented in presumably every type of data storage and

processing system. Traditional relational database systems have built-in geometry data

types and operations: Oracle’s DBMS has data types for, among others, points, lines, and

polygons, which can be defined using the SDO_GEOMETRY type. The system uses R-trees for

indexing and supports within distance, nearest neighbors and other types of queries [Or14].

IBM DB2 contains a spatial extender which provides various spatial data types that all share

a parent type called ST_GEOMETRY. It supports a Grid Index where the grid cells are indexed

2 https://github.com/dbis-ilm/stark

https://github.com/dbis-ilm/stark

The STARK Framework for Spatio-Temporal Data Analytics on Spark 125

using a B-tree [IBM13]. Microsoft SQL Server provides similar functionality and also uses

a hierarchical grid index. The open source systems MySQL and PostgreSQL also support

spatial data, where PostgreSQL uses the PostGIS extension, and support indexing using

R-trees.

With the advance of Big Data, the MapReduce paradigm and its open source implementation

in Hadoop became very popular and support for geospatial operators and indexing was

needed on this platform as well. In [WP+14] Whitmann et al. present a framework to index

spatial data for the Hadoop platform that uses quadtrees to support spatial queries. On

each node, a partial tree is created which is then shuffled to other nodes and combined to a

subtree of a complete index.

The first approach to implement spatial operations as an extension for Hadoop MapReduce is

SpatialHadoop [EM13; EM15]. The framework provides spatial operators for range queries,

k nearest neighbors, and joins. SpatialHadoop employs two index levels: on a global level

an index partitions data across all nodes while a second index organizes data inside each

partition. These indexes are used on read to eliminate records that do not contribute to the

final result. As index structures, SpatialHadoop supports grid files, R-tree, and R+-trees.

Another approach that extends the plain Hadoop MapReduce framework with spatial

operators is HadoopGIS [AW+13]. Similarly to SpatialHadoop, HadoopGIS utilizes a two

level indexing: a global partition indexing and an optional local spatial indexing. The query

processing engine, called RESQUE, uses these indexes to identify partitions to load and to

speed up processing the required partitions. The RESQUE engine provides spatial operators

like intersects, contains, distance, etc. The HadoopGIS system is integrated into Hive to

provide a declarative SQL-like query language as user interface.

Accumulo3 is a key-value store on top of Hadoop and is based on the design on Google’s

BigTable. In GeoMesa [F+13] the keys are created as a combination of the temporal value

and the Geohash4 representation of the spatial component. It is primarily designed for point

data and non-point data has to be decomposed into multiple disjoint geohashes, resulting in

duplicated entries in the index. It seems that data always has to have a spatial and a temporal

component. When querying data, only those data items are considered, that intersect with

the query region, based on the computed geohashes. GeoWave [Na] is a geospatial index

that is also based on Accumulo or HBase. Like GeoMesa, it uses Space Filling Curves to

represent multidimensional objects as 1-dimensional keys.

The in-memory execution model of Spark became very popular as it reduces the execution

time dramatically, compared to MapReduce jobs. Currently, there are two systems that

implement spatial operators for Spark: GeoSpark and SpatialSpark.

GeoSpark [YWS15; YWS16] is a Java implementation that comes with four different RDD

types: PointRDD, RectangleRDD, PolygonRDD, and CircleRDD. These special RDDs

internally maintain a plain Spark RDD that contains elements of the respective type, i.e.

points, rectangles, polygons, and circles. GeoSpark supports k nearest neighbor queries,

3 https://accumulo.apache.org

4 https://en.wikipedia.org/wiki/Geohash

https://accumulo.apache.org
https://en.wikipedia.org/wiki/Geohash

126 Stefan Hagedorn, Philipp Götze, Kai-Uwe Sattler

range queries, and join queries with contains or intersects predicates and each of these

queries can be executed with or without using an index. The predicate withinDistance is only

supported for joins. As described in [YWS15], GeoSpark supports R-trees and quadtrees to

create an ad hoc index the RDDs. However, during the evaluation it showed that choosing

quadtrees is not implemented. A persistent index does not seem to be possible since there is

no index load functionality. Internally, GeoSpark uses the JTS library5 which also provides

the index structures. JTS does not support nearest neighbor queries on the indexes, though,

and thus, GeoSpark uses their own extension to JTS, called JTSplus6, to support these type

of queries. GeoSpark comes with several partitioning techniques: R-Tree partitioning as

well as Voronoi, Hilbert, and fixed grid partitioning. The main drawbacks of GeoSpark are

that their spatial RDDs can only hold geometries of one certain type. On the one hand, this

makes it impossible to load a data set that contains different geometry types in one column

and on the other hand all other columns are removed when putting the data into these spatial

RDDs. This also means that it is not possible to process the data in subsequent steps since

related columns such as an ID are not available anymore. Furthermore, GeoSpark only has

support for spatial data and temporal aspects cannot be modeled or processed. From a user

perspective, GeoSpark provides an API which does not integrate tightly into Spark. RDDs

are not created by transformations or actions, but by creating new objects and passing in

values. Also operations like joins are not implemented as functions on these RDDs, but as

extra classes. This way, the user has to adopt yet another API.

The goal of the SpatialSpark approach described in [YZG15] is to provide a parallel join

technique for large spatial data sets with main focus on parallel hardware like multi-core

CPUs and GPUs. To compute a join, the complete right relation is indexed using an R-tree

which is then made available to all worker nodes using Spark’s broadcast variables. After

that, all items of the left relation are probed against that R-tree to find join partners. If

the right relation does not fit into memory, SpatialSpark provides Fixed Grid Partitioning,

Binary Space Partitioning, and Sort Tile Partitioning with and without using an R-tree as

index [YZG]. As filter operation, SpatialSpark supports range queries with the predicates

contains, whithin (containedBy), and withinDistance. The partitioning techniques from

above, however, can not be used for filter operations. When querying a persistent index for

these range queries the intersects predicate is compulsorily used. On top of that, k nearest

neighbor queries are not possible. While SpatialSpark provides spatial operations for Spark,

the core work of the authors is to integrate spatial operations into Impala. Thus, there is no

real API and many things have to be done still by hand. Internally, they expect RDDs with

an ID and a geometry object, which are processed when calling the specific query object

(like RangeQuery or BroadcastSpatialJoin). Similar to GeoSpark, no other payload but

the ID is allowed and, furthermore, the result of a join returns only the matched pairs IDs,

which requires additional joins afterwards to retrieve the complete tuple in the application.

In Tab. 1 we outline the key differences from our STARK approach to the two frameworks

for Spark GeoSpark and SpatialSpark. SpatialSpark and GeoSpark both provide some core

functionality for dealing with spatial data like filter, joins and indexing. However, these

frameworks both do not support spatio-temporal data and additionally, only GeoSpark

5 http://tsusiatsoftware.net/jts/main.html

6 https://github.com/jiayuasu/JTSplus

http://tsusiatsoftware.net/jts/main.html
https://github.com/jiayuasu/JTSplus

The STARK Framework for Spatio-Temporal Data Analytics on Spark 127

Tab. 1: Comparison of our STARK approach to GeoSpark and SpatialSpark

GeoSpark SpatialSpark STARK

Language integrated DSL x x X

Support for Temporal Data x x X

Data Partitioning X X X

Indexing X X X

Persisted Indexes x X X

Filter no partitioning

Contains X (X- w/o Index) X

Intersects X (X- w/ Index) X

WithinDistance x (X- w/o Index) X

Join (X- pred. limitations) (X- returns IDs) X

Nearest Neighbors X x X

Clustering x x X

Skyline x x (X- development)

supports nearest neighbors search as a more sophisticated data analysis operator. Both

implementations do not provide a clustering or skyline implementation. Because of the

respective design decisions and the resulting limitations of GeoSpark and SpatialSpark, we

decided not to build our spatio-temporal engine on top of these platforms as this would have

meant to rewrite a lot of code and rather built STARK from scratch. This way, we were able

to fully integrate the DSL into Spark and build a flexible set of operators.

3 Requirements for Spatio Temporal Data Processing

Based on the application examples sketched in Sect. 1 and the current state of the art in

spatio-temporal data processing we can identify several requirements for spatio-temporal

Spark extensions:

native support for spatio-temporal data: As provided by spatial relational database sys-

tems and also defined in the SQL standard, spatial Spark should support appropriate

data types in order to represent a set of standard geometries. Particularly, for the

language-integrated APIs these data types should be mapped to native classes with

similar APIs across the different language interfaces.

seamless integration into the Spark framework: In Spark, data processing is imple-

mented as transformations of immutable distributed datasets (RDD, DataFrame) as

well as actions returning data to the driver program. Together with the functional style

of the Scala (or even Python and Java) API this composes a powerful and expressive

way of formulating dataflow programs. Thus, a spatial/temporal extension should

follow the same approach by supporting the RDD/DataFrame interface and defining

spatial/temporal operations as transformations.

128 Stefan Hagedorn, Philipp Götze, Kai-Uwe Sattler

efficient and scalable processing of spatio-temporal data: Efficient processing of spa-

tial data with non-trivial geometries requires appropriate spatial indexes such as the

R-tree. The same holds for temporal data where temporal indexes such as interval

trees are used. However, in Big Data analytics we cannot assume that data is always

indexed in advance. Therefore, indexing should be optional as well as adaptive in

the sense that indexes can be built on the fly before performing spatial/temporal

operations and that such indexes are materialized for later reuse.

In order to exploit the benefits of a data-parallel platform like Spark, data partitioning

is a crucial task. Particularly, spatial data requires space partitioning ensuring that

closely located data objects are assigned to the same partition. Furthermore, the

paritioning strategy should also handle data skew for a better load balancing, i.e.

producing partitions with similar numbers of objects.

expressive spatial and temporal operations: Finally, a spatio-temporal framework should

support a standard set of spatial and temporal predicates and query operators including

filters, spatial and temporal joins, nearest neighbor search, and clustering. These

operators should make use of indexes if available but also work on non-indexed data.

As described in Sect. 2, existing solutions do not fulfill these requirements completely yet.

Thus, we have developed the STARK framework aiming at overcoming the deficiencies of

current approaches.

4 The STARK Framework: Architecture & API

One of the main design goals of STARK is the seamless integration of spatio-temporal data

and query operators into Apache Spark meaning that the user does not see any difference

to the standard Spark API. For this purpose, we introduce new classes that add spatio-

temporal operators to standard RDDs and encapsulate spatio-temporal data by a special

class STObject. Fig. 1 gives an overview of the architecture of the STARK framework and

its integration into the Spark ecosystem.

Scala API

Partitioner

RDD

Spark Core

Spatial Partitioner

Distance

Functions

PredicatesSpatial RDD

Indexes

Fig. 1: Overview of STARK architecture and integration into Spark.

In the following, we describe the API of STARK comprising these classes as well as the

RDD transformations for spatio-temporal operations. Furthermore, we present extensions to

our dataflow compiler Piglet which extends the Pig Latin language by appropriate concepts.

The STARK Framework for Spatio-Temporal Data Analytics on Spark 129

4.1 DSL

store to HDFS

query execution

load from HDFS

spatial

partitioning

optional

indexing

raw data

Fig. 2: Internal workflow for converting, partitioning, and querying spatio-temporal data

The goal of the STARK project is to create an easy to use DSL that can be used within any

Spark program (written in Scala). This DSL should contain all necessary operations, as

identified in Sect. 3 to comfortably work with spatio-temporal data. The possible workflow

is shown in Fig. 2. An RDD is partitioned using a spatial partitioner and can optionally be

indexed. Queries can be run on unindexed data as well as on indexed data. Indexes can be

persisted and loaded again in other scripts.

As a basic data structure, STARK uses an STObject class. This class is used to represent

the spatial and/or temporal component of any real world object. The class provides only two

fields: (1) geo for storing the spatial component and (2) time to hold the temporal component

of an object. To support spatial data without a temporal component, the time field may

be left empty. Like many other Java based open source projects that deal with spatial data,

STARK uses the JTS library with the JTSplus extension for internal representation of spatial

objects and index structures.

The STObject class also provides various functions to test relations to other instances:

intersect(o) checks if the two instances (this and o) intersect in their spatial and/or temporal

component,

contains(o) tests if this object completely contains o in their spatial and/or temporal

component, and

containedBy(o) which is implemented as the reverse operation of contains

The above functions all consider both, the spatial and the temporal component of the objects.

Thus, a check of the three above mentioned is only true, iff:

1. the check yields true for the spatial component, and

2. both temporal components are not defined or

3. both temporal components are defined and they also return true for the respective

check.

130 Stefan Hagedorn, Philipp Götze, Kai-Uwe Sattler

Or, expressed more formally: for two objects o and p of type STObject and a predicate Φ:

Φ(o, p) ⇔ Φs(s(o), s(p)) ∧ (

(t(o) = ⊥ ∧ t(p) = ⊥) ∨

(t(o) , ⊥ ∧ t(p) , ⊥ ∧ Φt (t(o), t(p))))

Where s(x) denotes the spatial component of x, t(x) the temporal component of x, Φs and

Φt denote predicates that check spatial or temporal objects, respectively, and ⊥ stands for

undefined or null.

Spark’s core component are resilient distributed datasets (RDDs). An RDD is a generic

in-memory partitioned collection that can be distributed among the cluster nodes. To add

support for spatio-temporal operations into Spark, STARK provides SpatialRDDFunction

classes that wrap a traditional RDD and implement the spatial operators. This follows the

concept that Spark implements for special operators on Pair-RDDs, like a join. A join can

only be executed if the input RDDs are Pair-RDDs, i.e. they contain 2-tuples (k,v), where

k is used as join attribute. Spark automatically creates a PairRDDFunction object with the

input RDD as parameter, using Scala’s implicit conversions. The PairRDDFunction class

then implements the join method.

STARK also provides such implicit conversions that create a SpatialRDDFunction object

of a Pair-RDD, where the key k is of type STObject 7. The value v of that pair can be

of any type and is maintained during all operations. The SpatialRDDFunction class

implements all spatial operations supported by STARK: filtering, join, kNN, clustering, as

well as indexing.

The implicit conversion is transparent to the users and creates a seamless integration into

any Spark program. Users don’t have to explicitly create an instance of any of STARKs

classes (except STObject) to use the spatial operators.

We now show how to transform a normal RDD loaded from a text file into a SpatialRDD and

how to use it: Consider an example where we have a dataset given as a CSV file that contains

a list of events from various categories. The schema of that file might be: (id: Int,

description: String, category: String, wkt: String, time: Long). After

loading, preprocessing, and transforming, we get an RDD of exactly that type: RDD[(Int,

String, String, String, Long)]. We then create an STObject representing the

location and time of occurrence from the WKT string and time field, respectively, of each

entry:

val events = rdd.map { case (id, desc, category, wkt, time) =>

(STObject(wkt, time), (id, desc, category)) }

The resulting RDD is of type RDD[(STObject, (Int, String, String))]. We can

now simply use this RDD to call the functions to filter with a predicate.

7 In the following we will refer to such an RDD[(STObject,V)] as SpatialRDD and exclude the implicit

conversion.

The STARK Framework for Spatio-Temporal Data Analytics on Spark 131

val ‘ryTime = 1481287522

val ‘ry = STObject("POLYGON((....))", ‘ryTime) // create a ‘uery object

val contain = events.containedBy(‘ry) // events contained by the ‘uery region

val intersect = events.intersect(‘ry) // events that intersect with the ‘uery

Unlike in GeoSpark, in STARK a single RDD can hold objects of different geometries. This

means that an STObject in events can represent a simple point, but also a polygon or any

other geometry that can be represented as WKT.

In addition to the filtering operators shown above, STARK has also built-in support for

spatial joins, k nearest neighbor search, and clustering as well as for computing skylines,

which is currently under development and not released yet. These operators will be explained

in Sect. 6.

4.2 Piglet Integration

In addition to the language-integrated DSL for the Scala programming language we also

provide support for our dataflow compiler Piglet [HS16] that implements an extended Pig

Latin dialect. Piglet generates code not only for Apache Spark but also for Flink and the

streaming variants Spark Streaming and Flink Streaming. In addition to the backend specific

operators it offers a lot of extensions to support, e.g., Linked Data, Basic Graph Patterns

(BGP), matrix data, R scripts, and embedded code.

The goal of Piglet8 is to simplify the development of data processing programs. Scripts can

be compiled, packaged, and executed on the local machine or a YARN/Mesos cluster with a

single command avoiding the tedious tasks of compiling and deploying all dependencies to

a cluster.

In order to add support for spatial data into Piglet, we have introduced a new Pig data type

called geometry and added new operators for filter, join, and indexing. The geometry data

type is mapped to the Scala class STObject and instances can be constructed, e.g., from a

WKT string.

Spatial data processing is supported by two operators:

• In order to filter a bag using some spatial predicate the SPATIAL_FILTER operator

can be used.

• A spatial join is performed using the SPATIAL_JOIN operator. Same as for the

SPATIAL_FILTER the join predicate can be defined by the user.

In the following example we assume two data sets: The first contains the names of states and

their respective border as a WKT string. The second data set contains a list of events given

with their ID and the respective latitude and longitude coordinates. To find the countries

that each event occurred in, we can join these two data sets using the contains predicate:

8 https://github.com/dbis-ilm/piglet

https://github.com/dbis-ilm/piglet

132 Stefan Hagedorn, Philipp Götze, Kai-Uwe Sattler

countriesRaw = LOAD 'countries.csv' as (name: chararray, poly: chararray);

countries = FOREACH countriesRaw GENERATE name, geometry(poly) as cntry;

eventsRaw = LOAD 'events.csv' AS (id: chararray, lat: double, lon: double);

events = FOREACH eventsRaw GENERATE id, geometry("POINT("+lat+" "+lon+")") as loc;

eventCountries = SPATIAL_JOIN countries, events ON contains(cntry, loc);

DUMP eventCountries;

Internally, Piglet represents the script as a dataflow plan – the logical representation

of the operator graph. The plan is passed to a rewriter which applies optimization and

transformation rules and then sends the rewritten plan to the code generator which uses a

template file to create the source code for the selected target platform. When generating the

code for the SPATIAL_JOIN in the example above, the code generator has to produce code to

ensure the correct input/output format, i.e., in this example conversion from (chararray,

geometry) to (geometry, (chararray, geometry)) which is required to for the

implicit conversion to the SpatialRDDFunctions object of which we can call the spatial

functions.

The Piglet integration also supports indexing (see Sect. 5) which can be done by the INDEX

operator. The operator allows to specify the parameters needed to partition and index the

data:

eventsIdx = INDEX events ON loc USING RTree(maxCost=100, cellSize=1.0, order=5);

Here, an R-tree index is created after applying a cost-based partitioning (see next section),

where maxCost defines the maximum cost per partition, cellSize the side length of a cell

used for the partitioning, and order is the order of the tree, i.e., the number of entries per

node. Using the index is transparent in the Pig script: users can simply apply a filter or join

operation on the eventsIdx bag.

Currently, the Pig Latin extension for spatial data is available only for the Spark target

platform as it uses the STARK library. Though, we are working on a Flink port of the

STARK project with which we are able to activate this extension for the Flink target, too.

5 Partitioning and Indexing in STARK

5.1 Partitioning

Spark leverages the data parallelism of the Hadoop environment and a program is executed

in parallel on different nodes, where each node processes a (small) portion of the complete

dataset, called a partition. Spark uses built-in partitioners, e.g., a hash partitioner, to assign

each data item to a partition. However, while for text data it might be enough to create

partitions of equal size, for spatial data one would also like to exploit the locality of the

spatial feature of the data items. Consider for example a hash partitioner and a spatial

grid partitioner: while both partitioners may create partitions of equal size, i.e. the same

number of data items in each partition, the partitions created by the hash partitioner contain

The STARK Framework for Spatio-Temporal Data Analytics on Spark 133

points from all over the data space disregarding their neighborhood, because the partition

assignment is solely decided upon the hash value of the ID of the point, h(x). Although

we still can compute the result for, e.g., a spatial join operation, we cannot discard any

partition apriori, because all partitions potentially contain join candidates. On the other

hand, the spatial partitioner, in this case a simple spatial grid partitioner, divides the space

using a grid and each resulting grid cell is a partition. If we now compute the minimum and

maximum values for each dimension (e.g, latitude and longitude or x,y,z) we can easily

decide if a partition contains potential join candidates or filter results, even without creating

real indexes. We will talk about partition bounds for pruning at the end of this sub-section

and describe how it is implemented in Sect. 6. Currently, STARK only uses the spatial

component for partitioning (and indexing). However, in our current work we integrate the

temporal component into both, partitioning and indexing.

Grid Partitioner. As briefly described before, the spatial grid partitioner creates partitions

based on a grid over the data space. The partitioner accepts two parameters: the number of

partitions in each dimensions (partitions per dimension, ppd) and the number of dimensions,

where the latter has a default value of 2. To compute the cell size, the partitioner has to

know the minimum and maximum values for each dimension. These values can be given as

parameters or easily be computed by the partitioner in one single pass over the data. The

side length in dimension i of a cell is determined by the minimum and maximum values for

this dimension and the ppd:

lengthi = | maxi − mini | /ppd

To compute the partition a given point p belongs to, the partitioner has to simply calculate

the partition ID partitionId. For a two dimensional scenario the formula would be:

x = ⌊⌊ | p1 − min1 | ⌋ / length1⌋

y = ⌊⌊ | p2 − min2 | ⌋ / length2⌋

partitionId = y ∗ ppd + x

Binary Space Partitioner. The disadvantage of the naïve Grid Partitioner is that if

the data points are skewed with only a few outliers throughout a large data space, the

partitioning will result in lots of partitions were many of them are empty, some containing

only very few data points, maybe only one or two, and only a small number of partitions

with almost all data points. In an environment like Spark, this means that one executor has

to perform all the work, i.e. process all data points, while other executors that were assigned

an empty partition have no work to do. Thus, we additionally implemented the Binary Space

Partitioner presented by He et al. in [H+14]. The advantage of this partitioning method is

that one can define a maximum cost for a partition. First, the data space is divided into small

quadratic cells of a given side length. Then, all possible partitioning candidates along the

cell bounds in all dimensions are evaluated. After testing all possible partitioning candidates,

the partitioning with smallest cost different between both candidate partitions is applied.

134 Stefan Hagedorn, Philipp Götze, Kai-Uwe Sattler

Fig. 3: A Binary Space Partitioning resulting in 5

partitions for a maximum cost of 22. Dashed lines

represent cells and solid lines mark boundaries

for generated partitions.

q

partition 1 partition 2

Fig. 4: Two neighbor partitions (solid lines) and

the extent (dashed line) for partition 2 based on

the contained geometries.

This results in two partitions for which the process is repeated recursively, if the according

partition is longer than one cell length in at least one dimension and its cost is greater

than the given maximum cost. While the authors of [H+14] introduce a sophisticated cost

formula that also takes disk accesses and loading times into account, we simply consider

the number of data points inside a partition as its cost. Applying this partitioning approach

will result in partitions of almost equal cost, if the cell size is chosen reasonably according

to the data. Fig. 3 shows a sample partitioning where the space is divided into 14 × 12 cells

and results in 5 partitions with a maximum cost of 22.

Partitioning Polygons. The spatial partitioners decide to which partition a geometry

belongs based on its position in space. Both introduced partitioners are based on grid cells

of a fixed size, i.e. a width and height in two dimensional space. For points, the partitioners

simply check which grid cell contains the current point and use this information to assign it

to a partition. If the RDD contains not only points, but also polygons, these polygons may

be larger than a grid cell. To decide to which partition a polygon belongs, the partitioners

use the centroid point of that polygon.

While we can assign polygons to cells and therefore to partitions, this would create incorrect

results when we use partitioning information to prune partitions before executing a join or

filter operation: We might prune a partition based on its computed dimensions, the contained

polygons, however, might span beyond the partition bounds and actually match the filter

or join predicate. Fig. 4 shows an example of two neighbor partitions and a query point ‘,

that lies within partition 1. If we wanted to find all geometries that contain ‘, we would

prune partition 2 and falsely not find polygon p1 (which is assigned to partition 2) as result.

Therefore, in addition to the computed bounds, we also keep the extent of a cell/partition.

This extent information is stored as a rectangle (in 2D space) and is created from the

minimum and maximum x and y values of the cell/partition bounds and of all elements

inside that cell/partition. For partition pruning, we then consider not the theoretical partition

bounds, but the partition’s extent. For the BSP, the extent of a partition is computed from all

extents of the cells inside that partition.

The STARK Framework for Spatio-Temporal Data Analytics on Spark 135

5.2 Indexing

Repartitioning the data according to its spatial distribution can help to improve query

performance. However, since all data items within a partition are candidates for the current

spatial predicate of a query, nothing can be omitted and they all have to be evaluated. To

further improve performance, STARK additionally can create an index for each partition.

Theoretically, STARK can index a partition using any in-memory spatial index structure

implementation. Currently, we support the R-tree index structure provided by the JTS library

and plan to include more index structures in upcoming versions. In their Spark program,

one can choose between the following three indexing modes:

No Index No index structure is used, and all data items are evaluated for query processing.

This can be useful if the costs for creating and querying an index exceed the costs for

processing all items (e.g., a full table scan). Note, in this case it does not matter how the

RDD is partitioned.

Live Indexing During live indexing, the data is repartitioned using a given partitioner,

if it was not partitioned before. Upon evaluation of a spatial or spatio-temporal predicate,

all data items of a partition are first put into an index structure. Then this index is queried

according to the spatial predicate of the query and, after pruning the candidates from the

tree query, the overall result is returned.

Persistent Index For persistent indexing, the content of a partition is put into an index

structure which is then used to evaluate the actual predicate. In contrast to live indexing,

this execution mode changes the type of the input RDD from RDD[(STObject , V)] to

RDD[RTree[STObject , (STObject ,V)]]. This means that the resulting RDD consists

of R-tree objects instead of single tuples. This way, the index can be reused for subsequent

operations. Furthermore, it can even be materialized to disk and loaded again for another

execution. Thus, the index can be shared among different scripts to avoid the costly creation

over and over again. Fig. 5 shows a data space which is partitioned into five partitions with

equal costs. These partitions are indexed using the persistent index mode which results in

an RDD with five entries.

As stated before, in our current work we investigate how to integrate the temporal component

into indexing. One solution is to simply create two index structures, one for spatial and for

temporal data, query both, and finally merge the results. However, in the literature there are

dedicated approaches for spatio-temporal indexing ([MGA03; TVS96; ZSA99]), that we

currently evaluate and will finally integrate into STARK.

6 Operator Implementation

Filter. The spatial filter operator for the different predicates is implemented as extra

methods in the SpatialRDDFunction classes. An RDD can be filtered using the contains,

containedBy, intersects, and withinDistance predicates. The first three mentioned predicates

expect exactly one argument: the reference object (of type STObject) for which the respec-

tive predicate is to be evaluated. The operation is implemented as a Spark transformation

and hence does not have any shuffling cost as it can be evaluated locally on a node’s partition.

136 Stefan Hagedorn, Philipp Götze, Kai-Uwe Sattler

Partition

RDD[RTree[...]]

Fig. 5: A data space partitioned into five partitions which are indexed using an R-tree.

Algorithm 1 Filter operator and partition pruning - without indexing.

1: procedure Intersects(partition, qryObj)

2: checkPart ← true

3: if rdd.partitioner isA SpatialPartitioner then ⊲ Pruning only for spatial partitioned RDDs

4: sp ← rdd.partitioner as SpatialPartitioner

5: extent ← sp.partitionExtent(partition)

6: checkPart ← extent .intersects(qryObj) ⊲ Check only if ‘ryObj intersects with partition

7: end if

8: if checkPart then ⊲ Partition can contain results

9: for each g in partition.iterator do

10: if qry.intersects(g)) then ⊲ Apply predicate

11: emit g

12: end if

13: end for

14: end if

15: end procedure

The withinDistance predicate expects not only the reference object to which the distance

should be computed, but also the distance function to use. The idea is to suppoert data of

a cartesian as well as, e.g., a geodedic coordinate system which require different distance

metrics for accurate computations.

The filter operators can prune partitions that cannot contain result tuples, if the RDD

was partitioned using a spatial partitioner. Algorithm 1 shows the pseudocode of the

intersects filter operator without indexing for a single partition. Spark executes the code for

each partition in parallel without any additional programming effort. If the RDD was not

partitioned using a spatial partitioner, we have to test each element in the partition with the

predicate function. For the actual filtering, we iterate over all elements of that partition and

apply the respective predicate function.

Nearest Neighbors. The nearest neighbor operator follows a straightforward implementa-

tion. Since the operators are executed in parallel without the nodes communicating with

each other, an executor cannot decide alone, if its assigned partition contains elements that

belong to the result. Thus, we compute the k nearest neighbors for each partition individually

by computing the distance of each element to the query object, sort these elements by their

respective distance to the query object in ascending order, and then return only the first k

items. This results in n lists of k elements, if the RDD consists of n partitions. We then apply

a global sort of these n × k elements and return only the first k items as the final result.

The STARK Framework for Spatio-Temporal Data Analytics on Spark 137

Algorithm 2 Join operator for contains predicate - with live indexing.

1: procedure GetPartitions(le f tRDD, rightRDD)

2: for each l in leftRDD.partitions do ⊲ Check for spatial partitioner left out for brevity

3: for each r in rightRDD.partitions do

4: if l.intersects(r) then ⊲ Partitions must intersect to contain join results

5: emit new JoinPartition(l, r)

6: end if

7: end for

8: end for

9: end procedure

10: procedure LiveIndexJoin(joinPartition, predicateFct)

11: tree← new RTree()

12: for each l in joinPartition.leftIterator do ⊲ Build index with all items of leftRDD

13: tree.insert(l)

14: end for

15: for each r in joinPartition.rightIterator do

16: candidates ← tree.query(r) ⊲ Query index with each entry in rightRDD

17: for each c in candidates do ⊲ R-tree returns candidates only

18: if predicateFct(c,r) then ⊲ Apply predicate

19: emit (c, r) ⊲ c is from leftRDD

20: end if

21: end for

22: end for

23: end procedure

Join. A spatial join is a join operation using a spatial predicate like contains or intersects.

In Spark however, only equi-joins are supported and θ-joins have to be implemented by the

user. Hence, STARK provides its own implementation of join algorithms.

The join function accepts the other spatial RDD to join with as well as the join predicate.

The predicate can be given as a function or as a identifier (an instance of a enumeration).

Algorithm 2 shows the implementation of a join operator with partition pruning. To compute

a join in Spark, we first have to produce the cartesian product of the partitions of both RDDs.

When generating this cartesian product, we can check if the two partitions match the join

predicate, e.g., intersect each other. If they do not match this predicate, this combination

will not contain join partners and we can safely omit this combination. For combinations

that can contain join partners, we create a new instance of a JoinPartition that contains

references to these two partitions of the respective input RDDs.

For the actual computation of the join, the Spark framework will provide an executor with a

partition which is now of type JoinPartition. For live indexing, we now iterate over the

elements of the left RDD and insert the elements into an R-tree. Then, we query the R-tree

with all elements of the right RDD and apply the predicate function to find join partners.

Note, that the predicate may test the spatial or spatio-temporal components of the elements

(same for the filter operator).

Clustering Another important operator for spatio-temporal data is clustering to identify

groups of objects that occur close to each other in space and/or time. STARK comes with

its own implementation of the density-based clustering algorithm DBSCAN for Spark. Our

138 Stefan Hagedorn, Philipp Götze, Kai-Uwe Sattler

implementation is inspired by the MR-DBSCAN algorithm for MapReduce [H+14] and

exploits Spark’s data parallelism as well as makes use of the spatial partitioners.

The main idea of this algorithm is as follows: first, the data is partitioned in a way that all

partitions are equally-sized for a better load balancing. Next, these partitions are extended in

each direction by the value of the ǫ parameter of DBSCAN to overlap with their neighboring

partitions. This partitioning step requires a shuffling of all data. Note, that some objects

(which are contained in the overlap regions) are assigned to multiple partitions. Then, for

each partition a local DBSCAN is performed in parallel to identify partition-local clusterings.

Because this step produces different clusterings for each partition, an additional merge

step is needed where objects from overlap regions assigned to multiple clusters are used to

merge these clusters by constructing a graph of cluster pairs. In this graph, nodes represent

local clusters and edges denote inter-partition relationships between clusters which can

be merged. Based on this information, the objects are assigned to a single cluster in the

final step. A crucial step in this algorithm is the partitioning: particularly, for skewed data a

simple hash-based or even grid-based partitioning will result in an imbalance of numbers of

objects per partition and, therefore, very different efforts for computing the local clustering.

In order to avoid this problem, our DBSCAN implementation uses the spatial partitioner

introduced in Sect. 5 to determine the initial partitions.

7 Evaluation

In this evaluation we will examine the performance of STARK and compare it to the

competitors GeoSpark and SpatialSpark in their latest versions found on GitHub (GeoSpark:

v0.3, SpatialSpark: v1.1.0). For our experiments, we used a cluster of 16 nodes where each

node has an Intel Core i5 processor, 16GB RAM, and a 1TB disk. All experiments were

executed in YARN mode with 16 executors and 2 cores per executor. On our cluster we run

Ubuntu 14.04 with Hadoop 2.7, Spark 1.6.2 (because at the time of writing GeoSpark only

supported this Spark version), Scala 2.11, and Java 1.8. Every test case was executed five

times and the best result for each platform was chosen for comparison.

To create data sets, we had to comply with the requirements of the other two frameworks:

GeoSpark can only work with data that contain only points or polygons, but not mixed data.

SpatialSpark only supports RDDs with a Long value at the first position and the geometry

at the second position. Other values are not allowed in addition to that. Since the other

frameworks do not support spatio-temporal data, we only test spatial predicates.

We chose a sample of the taxi trip data9 with trip information like pick up/drop off times

and locations that represent our points-only data set and it contains 34 million entries.

Additionally, we used a data set with only polygons that is created from an Open Street Map

world dump. From this dump we exported the polygons of all borders, except of national

borders, resulting in 322000 polygons. For our experiments with the join operator, we used a

third data set called blocks10 that contains around 38000 polygons representing all census

9 http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

10 http://www1.nyc.gov/site/planning/data-maps/open-data.page

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www1.nyc.gov/site/planning/data-maps/open-data.page

The STARK Framework for Spatio-Temporal Data Analytics on Spark 139

tracts and blocks of New York City. The taxi and blocks data sets were used in [YZG15],

too. In addition to the results shown in this paper, we publish more results with other larger

data sets on GitHub11.

First, we conducted a test set for filter operations. In these experiments we created all

combinations of supported partitioners with both live indexing and no index mode. Where

applicable, all partitioners are executed with the same parameters. There are three filter

operators that (1) find all polygons in world that contain a given query point, (2) find all

polygons in world which intersect with a given query polygon, and (3) find all points in

taxi that are within a maximum distance to a given point.

During the test construction some limitations and issues of the platforms came to light. In

GeoSpark for example, one cannot combine spatial partitioning and indexing. Furthermore,

the contains predicate was implemented the wrong way around and range filters with index

only returned the candidates of an R-tree query without applying a predicate. We had to fix

this to achieve comparability. For SpatialSpark, partitioning is not possible at all for range

queries. On top of that, without index only contains and withinDistance and with persistent

index only intersects is possible. The results of these filter operators for the best partitioner

of each platform are shown in Fig. 6.

no partitioner no partitioner no partitioner no partitioner no partitionerBSP Grid

Fig. 6: Runtimes for filter operators with different indexing modes

Regarding the feature width, it can be seen that STARK offers the best use case coverage

supporting all three operators both with and without using an index. STARK performs better

for all executed filters than its competitors. Even for our relatively small test data set, the

differences are clear and we expect them to be even greater for larger data sets. Especially for

the contains and intersects queries partition pruning pays off. Due to internal implementation

and design decisions, partition pruning cannot be applied with the withinDistance predicate

and it will be addressed in future work. Different than expected the live index does not

bring any benefit and is almost always slower in comparison to no index usage. Since the

selectivity is quite high (there are less than 5 result tuples in each operation), the reason for

this is probably the small size of the data and building the index requires more time than the

faster lookup can improve the query. For larger data sets and larger partitions, the indexing

will surely be much faster.

11 https://github.com/dbis-ilm/spatialbm

https://github.com/dbis-ilm/spatialbm

140 Stefan Hagedorn, Philipp Götze, Kai-Uwe Sattler

For filtering, GeoSpark performs best with no partitioning at all. SpatialSpark has no

partitioning possibility for filter queries and, thus, the results for no partitioner is presented

here. In the case of STARK, for each query another partitioning mode performs best. The

reason that without spatial partitioning GeoSpark performs best is that the taxi data is

highly clustered with only a few outliers. From the 34 million trip points, only a few hundred

points are outside of Manhattan and some of them are very far away. Hence, millions of

points are only a few centimeters away from each other. To achieve a good partitioning, a

grid or BSP partitioner has to be configured with, e.g., a large number of very small cells to

distribute those dense points to different partitions and hence create a balanced workload

on the executors. With the highly clustered data, the partitioners tend to create a small

number of partitions with a large number (millions) of points causing this executor to have

all the work to do. Spark’s hash partitioner, however, creates an even distribution, and thus,

GeoSpark performs better without spatial partitioning. STARK however, was able to find a

good spatial partitioning and therefore was able to apply partition pruning for additional

speedup.

After examining the filter operators, we conducted a set of experiments for join operators.

Since the taxi and world data sets contain a large number of entries each, we had to

reduce the number of points and polygons in the respective input data sets to account for

the limited hardware and to achieve reasonable execution times for repeatable experiments.

We reduced the number of points by taking a sample of the original taxi data set, which

contains 1328 points.

Also the implementation of the join tests revealed some limitations of the competitors.

SpatialSpark for instance enforces the usage of an index when no partitioning is used.

Outputting the result as ID tuple is also very limiting as already mentioned in Sect. 2. For

GeoSpark partitioning is required for every join variant. Furthermore, when not using an

index the predicate contains is automatically used while with indexing only the unfiltered

candidates of the R-tree query are returned, which may be not the correct result. Although

the withinDistance predicate is possible, it is limited to point geometries exclusively.

The join operations were also executed for all combinations of partitioners and indexing

modes and the results for the join with contains predicate is shown in Fig. 7. We see that

Fig. 7: Runtimes of the join operator with contains predicate for each partitioner using live index.

The STARK Framework for Spatio-Temporal Data Analytics on Spark 141

STARK outperforms GeoSpark and SpatialSpark if a spatial partitioner is used. Without

spatial partitioning, we have to produce an expensive cartesian product and check all

partition combinations for possible join partners. Without a spatial partitioner, SpatialSpark

collects all entries of the right relation on one node and builds an R-tree. This tree is made

available to all nodes using Spark’s broadcast variable. This is obviously a good approach

as long as data fits in memory. The runtime differences come from the time needed for

partitioning and probably again from STARK’s partition pruning ability.

Lastly, we ran an experiment with STARK’s persistent indexing. Tab. 2 shows the runtimes

for live and persistent indexes for a join. This join has to find all elements from world that

contain points from an event data set which has 15000 events from all over the globe. This

basically shows the overhead of creating the index. For persistent index, the index is already

present to the operator which can use it for its operation. Also, a subsequent operator can

make use of this index without recreating it.

Tab. 2: Comparison of live & persistent indexing

Live Index Persistent Index

BSP 12.6 sec 8.3 sec

Grid 20.6 sec 18.5 sec

8 Summary

In this paper we presented our STARK framework for analyzing large spatio-temporal data

sets on Apache Spark. STARK integrates seamlessly into a Spark program by providing

automatic conversion methods that, from a user perspective, add operators with spatial

and spatio-temporal predicates to Spark’s RDDs. STARK provides spatial partitioners and

different indexing modes. A generated index can be stored persistently and loaded again by

other scripts. Operators support these indexes, but also work on unindexed data. For further

speedup, the operators can benefit from the spatial partitioning by not processing partitions

that cannot contain any result tuples. In our experimental evaluation we compared STARK

to GeoSpark and SpatialSpark and showed that it performs better and also provides a much

more complete, flexible, and well integrated set of operators. In addition to the filter and join

operators, STARK provides a DBSCAN clustering operator. In our ongoing work we extend

the framework by more analysis operators like Skyline or Complex Event Patterns. For the

skyline operator an angular partitioner, as described in [CHW12], is being implemented.

Furthermore, we will integrate the temporal aspect more deeply into the framework and

will use the temporal data for partitioning and indexing, too.

Acknowledgements This work was partially funded by the German Research Foundation

(DFG) under grant no. SA782/22.

142 Stefan Hagedorn, Philipp Götze, Kai-Uwe Sattler

References

[AW+13] Aji, A.; Wang, F., et al.: Hadoop GIS: A High Performance Spatial Data

Warehousing System over Mapreduce. VLDB Endow. 6/11, pp. 1009–1020,

Aug. 2013.

[CHW12] Chen, L.; Hwang, K.; Wu, J.: MapReduce Skyline Query Processing with a

New Angular Partitioning Approach. In. IPDPS, pp. 2262–2270, May 2012.

[EM13] Eldawy, A.; Mokbel, M. F.: A demonstration of SpatialHadoop: An Efficient

MapReduce Framework for Spatial Data. In. VLDB Endow., Aug. 2013.

[EM15] Eldawy, A.; Mokbel, M. F.: SpatialHadoop: A MapReduce Framework for

Spatial Data. In: ICDE. Seoul, 2015.

[F+13] Fox, A.; Eichelberger, C., et al.: Spatio-temporal indexing in non-relational

distributed databases. In: Big Data. 2013.

[H+14] He, Y.; Tan, H., et al.: MR-DBSCAN: a scalable MapReduce-based DBSCAN

algorithm for heavily skewed data. FCS 8/1, pp. 83–99, 2014.

[HS16] Hagedorn, S.; Sattler, K.-U.: Piglet: Interactive and Platform Transparent

Analytics for RDF & Dynamic Data. In. WWW 2016 Companion, 2016.

[IBM13] IBM: IBM DB2 10.5 Spatial Extender User’s Guide and Reference, July 2013.

[MGA03] Mokbel, M. F.; Ghanem, T. M.; Aref, W. G.: Spatio-temporal access methods.

IEEE Data Eng. Bull. 26/2, pp. 40–49, 2003.

[Na] National Geospatial-Intelligence Agency, N.: GeoWave, http://ngageoint.github.

io/geowave, Accessed Dec. 13, 2016.

[Or14] Oracle: Oracle Database 12c: An Introduction to Oracle’s Location Tech-

nologies, http : / / download.oracle .com/ otndocs/ products / spatial / pdf / 12c/

oraspatialandgraph_12c_wp_intro_to_location_technologies.pdf, Sept. 2014.

[TVS96] Theodoridis, Y.; Vazirgiannis, M.; Sellis, T.: Spatio-temporal indexing for large

multimedia applications. In: ICMCS. Pp. 441–448, 1996.

[WP+14] Whitman, R. T.; Park, M. B., et al.: Spatial Indexing and Analytics on Hadoop.

In. SIGSPATIAL, 2014.

[YWS15] Yu, J.; Wu, J.; Sarwat, M.: Geospark: A cluster computing framework for

processing large-scale spatial data. In: International Conference on Advances

in Geographic Information Systems. SIGSPATIAL, 2015.

[YWS16] Yu, J.; Wu, J.; Sarwat, M.: A demonstration of GeoSpark: A cluster computing

framework for processing big spatial data./, pp. 1410–1413, 2016.

[YZG] You, S.; Zhang, J.; Gruenwald, L.: Large-scale spatial join query processing in

cloud, https://github.com/syoummer/SpatialSpark, Accessed Sept. 13, 2016.

[YZG15] You, S.; Zhang, J.; Gruenwald, L.: Large-scale spatial join query processing in

cloud. In. ICDEW, pp. 34–41, 2015.

[ZSA99] Zimbrão, G.; de Souza, J. M.; de Almeida, V. T.: The temporal R-tree, tech. rep.,

Technical Report ES492/99, COPPE/Federal University of Rio de Janeiro,

Brazil, 1999.

http://ngageoint.github.io/geowave
http://ngageoint.github.io/geowave
http://download.oracle.com/otndocs/products/spatial/pdf/12c/oraspatialandgraph_12c_wp_intro_to_location_technologies.pdf
http://download.oracle.com/otndocs/products/spatial/pdf/12c/oraspatialandgraph_12c_wp_intro_to_location_technologies.pdf
https://github.com/syoummer/SpatialSpark

