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Distributed Grouping of Property Graphs with Gradoop

Martin Junghanns1, André Petermann2, Erhard Rahm3

Abstract: Property graphs are an intuitive way to model, analyze and visualize complex relationships
among heterogeneous data objects, for example, as they occur in social, biological and information
networks. These graphs typically contain thousands or millions of vertices and edges and their entire
representation can easily overwhelm an analyst. One way to reduce complexity is the grouping of
vertices and edges to summary graphs. In this paper, we present an algorithm for graph grouping
with support for attribute aggregation and structural summarization by user-deĄned vertex and edge
properties. The algorithm is part of Gradoop, an open-source system for graph analytics. Gradoop

is implemented on top of Apache Flink, a state-of-the-art distributed dataĆow framework, and thus
allows us to scale graph analytical programs across multiple machines. Our evaluation demonstrates
the scalability of the algorithm on real-world and synthetic social network data.
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1 Introduction

Graphs are a simple, yet powerful data structure to model and to analyze relationships

among real-world data objects. The Ćexibility of graph data models and the variety of

existing graph algorithms made graph analytics attractive to diferent domains, e.g., to

analyze the world wide web or social networks but also for business intelligence and the life

sciences [Ne10, Ma10, Pa11, Pe14a]. In a graph, entities like web sites, users, products or

proteins can be modeled as vertices while their connections are represented by edges.

Real-world graphs are often heterogeneous in terms of the objects they represent. For

example, vertices of a social network may represent users and forums while edges may

express friendships or memberships. Further on, vertices and edges may have associated

properties to describe the respective object, e.g., a userŠs age or the date a user became

member of a forum. Property graphs [RN10, An12] are an established approach to express

this kind of heterogeneity. Figure 1(a) shows a property graph that represents a simple

social network containing multiple types of vertices (e.g., User and Forum) and edges (e.g.,

follows and memberOf ). Vertices as well as edges are further described by properties in

the form of key-value pairs (e.g., name : Alice or since : 2015). However, while small

graphs are an intuitive way to visualize connected information, with vertex and edge

numbers increasing up to millions and billions, it becomes almost impossible to understand

the encoded information by mere visual inspection. Therefore, it is essential to provide

graph grouping methods that reduce complexity and support analysts in extracting and

understanding the underlying information [THP08, Ch08, Zh11]. The following examples

highlight the analytical value of such methods:
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Fig. 1: (a) shows an example social network as input of the grouping operator; (b) shows the vertices

and edges of (a) grouped according to their label including count aggregates stored in respective

properties at the resulting vertices and edges; (c) shows the subgraph containing users and their mutual

relationships grouped by usersŠ location and edge labels including aggregate values expressing the

oldest userŠs age per location and the number of edges among locations.

Example 1: Type Graph A simple graph analytical question is: “Which types of entities

are contained and how are they connected?”. With regard to our social network example,

the answer is shown in Figure 1(b). Here, each vertex represents a group of vertices from

the original graph that share the same type. For example, vertex 8 represents the users

Alice, Carol, Bob and Eve, while vertex 9 represents the forums GDM and Hadoop. Edges

are grouped according to their incident vertices and their type, e.g., edge 11 represents all

memberships among users and forums in the original graph. Furthermore, each vertex and

edge in the summary graph stores the number of elements it represents as a new property.

The resulting graph provides an overview of the underlying network and, thus, is a good

starting point for more detailed analyses.

Example 2: City Graph In this example we want to group users by the city they live in,

calculate the number of group members and Ąnd the smallest year of birth (yob) per group.

Edges shall be grouped by their type and also being counted. To achieve this, we need to

group users by the property city and aggregate each of these groups using the yob property.

The resulting summary graph is shown in Figure 1(c) and reveals that our social network

includes users from Leipzig and Dresden whereas the oldest person lives in Leipzig. This

high level view further shows how relationships are distributed among groups.

The examples demonstrate the value of summary graphs to gain useful insights into large

networks. Note that complex graph analytical questions often require the combination of

multiple algorithms, e.g., Example 2 requires extracting a subgraph containing only users

and their mutual relationships and replacing vertex labels by a certain property value before

the summary graph can be computed.

To support analyses combining multiple techniques, we started developing Gradoop, a

graph analytical system that implements the Extended Property Graph Model (EPGM)

[Ju16]. The data model deĄnes operators that can be combined to complex analytical

programs on single property graphs and graph collections. Gradoop is open-source4 and

4 http://www.gradoop.com

http://www.gradoop.com
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built on top of Apache Flink [Al14, Ca15b], a scalable dataĆow framework. Thus, the

execution of the provided operators can be distributed across a cluster of machines. To our

knowledge, no other distributed graph analytics framework provides a similar grouping

functionality. Our main contributions can be summarized as follows:

• We formally introduce the grouping operator to Ćexibly compute summaries of

property graphs by user-deĄned properties and aggregation functions.

• We discuss various analytical scenarios combining the grouping operator with other

graph operators provided by the Extended Property Graph Model.

• We describe the implementation of the grouping operator in the context of Gradoop,

our system for graph analytics on top of Apache Flink. We additionally introduce an

optimization for unbalanced workloads.

• We present experimental results to evaluate the scalability of our implementation by

applying the operator to real-world and synthetic social network data.

In Section 2, we provide the theoretical foundation of graph grouping in the context of the

Extended Property Graph Model and discuss diferent application scenarios. Afterwards in

Section 3, we describe the implementation of graph grouping utilizing operators of Apache

Flink. The experimental evaluation is presented in Section 4. Finally, we discuss related

work in Section 5 and conclude our work in Section 6.

2 Graph Grouping in the Extended Property Graph Model

First, we brieĆy introduce the used EPGM graph data model. Based thereon, we then formally

deĄne graph grouping and introduce the grouping operator in GrALa, our EPGM-speciĄc

DSL for graph analytics. We will further show how graph grouping is used to construct

summary graphs either stand-alone or in combination with other graph operators.

2.1 Extended Property Graph Model

Gradoop is based on a semantically rich, schema-less graph data model called Extended

Property Graph Model (EPGM) [Ju16]. In this model, a graph database consists of multiple

possibly overlapping property graphs which are referred to as logical graphs. Vertices, edges

and logical graphs have a type label (e.g., User, memberOf or Community) and may have an

arbitrary set of attributes represented by key-value-pairs (e.g., name : Alice). Formally, an

EPGM database is deĄned as follows:

Definition 1 (EPGM Database). An EPGM database DB = 〈V, E,L,K,T, A, κ〉 consists

of vertex setV = {vi}, edge set E = {ek} and a set of logical graphs L = {Gm}. Vertices,

edges and (logical) graphs are identified by the respective indices i, k,m ∈ N. An edge

ek = 〈vi, vj〉 with vi, vj ∈ V directs from vi to vj and supports loops (i.e., i = j). There can

be multiple edges between two vertices differentiated by distinct identifiers. A logical graph

Gm = 〈Vm, Em〉 is an ordered pair of a subset of vertices Vm ⊆ V and a subset of edges

Em ⊆ E where ∀〈vi, vj〉 ∈ Em : vi, vj ∈ Vm. Vertex, edge and graph properties are defined

by key set K , value set A and mapping κ : (V ∪ E ∪ L) × K → A. For the definition of type

labels we use a label alphabet T ⊆ A and a dedicated type property key τ ∈ K .

The EPGM deĄnes a set of expressive operators to analyze logical graphs and collections of

these. Since the in- and output of such operators are always logical graphs, the power of the
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EPGM is based on the ability to combine multiple operators to graph analytical programs.

For example, to achieve the summary shown in Figure 1(c), we have to extract the logical

graph containing only vertices of type User including their mutual relationships and use

the vertex property city as a new vertex label before applying the grouping operation. The

Gradoop framework already provides operator implementations for graph pattern matching,

subgraph extraction, graph transformation, set operations on multiple graphs as well as

property-based aggregation and selection [Ju16].

2.2 Graph Grouping

EPGM operators are classiĄed according to their input and output. For example, a unary

graph operator takes a single logical graph as input and outputs either a new logical graph

or a graph collection. Graph grouping belongs to the former ones as it outputs a single

logical graph, which we call a summary graph:

Definition 2 (Graph Grouping). For a given logical graph G(V, E), a non-empty set of

vertex grouping keys Kν ⊆ K , a set of edge grouping keys Kǫ ⊆ K and sets of aggregate

functions Λν and Λǫ , the graph grouping operator produces a so-called summary graph

G′(V ′, E ′) containing super vertices and super edges. The resulting graph and its elements

are added to the EPGM database, such thatL ← L∪{G′},V ← V∪V ′ and E ← E∪E ′.

Definition 3 (Super Vertex). Let V(G′) = {v′
1
, v
′
2
, ..., v

′
n} be the vertex set of a summary

graph G′ and sν : V(G) → V(G′) a surjective function, then v
′
i

is called a super vertex

and ∀v ∈ V(G), sν(v) is the super vertex of v. Vertices in V(G) are grouped based on

their property values, such that for a given non-empty set of vertex grouping keys Kν ⊆ K ,

∀u, v ∈ V(G) : sν(u) = sν(v) ⇔ ∀k ∈ Kν : κ(u, k) = κ(v, k). A super vertex stores the

properties representing the group, such that, ∀k ∈ Kν, ∀u ∈ V(G) : κ(sν(u), k) = κ(u, k).

Definition 4 (Super Edge). Let E(G′) = {e′
1
, e′

2
, ..., e′m} be the edge set of a summary

graph G′ and sǫ : E(G) → E(G′) a surjective mapping, then e′
i

is called a super edge and

∀〈u, v〉 ∈ E(G), sǫ (〈u, v〉) is the super edge of 〈u, v〉. Edge groups are determined along the

super vertices and a set of edge keys Kǫ ⊆ K , such that ∀〈u, v〉, 〈s, t〉 ∈ E(G) : sǫ (u, v) =

sǫ (s, t) ⇔ sν(u) = sν(s) ∧ sν(v) = sν(t) ∧ ∀k ∈ Kǫ : κ(〈u, v〉, k) = κ(〈s, t〉, k). Analogous

to super vertices, a super edge stores the properties representing the group, such that

∀k ∈ Kǫ, ∀〈u, v〉 ∈ E(G) : κ(〈sν(u), sν(v)〉, k) = κ(〈u, v〉, k).

Definition 5 (Aggregates). Additionally, sets of associative and commutative vertex and

edge aggregate functions Λν = {αν : ℘(V(G)) → A} and Λǫ = {αǫ : ℘(E(G)) → A} can

be used to compute aggregated property values for super vertices and edges. The resulting

value is stored at the respective super entity using a key determined by fα : Λν ∪ Λǫ → K ,

e.g., ∀αν ∈ Λν, ∀v
′ ∈ V(G′) : κ(v′, fα(αν)) = αν({u ∈ V(G) | sv(u) = v

′}).
In our introductory example we apply the grouping operator on a graph G representing

the social network in Figure 1(a). To compute the summary graph G′ of Figure 1(b), we

Ąrst need to specify two sets of grouping keys. To group vertices and edges by their type

label we use the type property key τ such that Kν = Kǫ = {τ}. Additionally, we deĄne

two aggregate functions ανcount
: V 7→ |V | and αǫcount

: E 7→ |E | and assign them to a

property key fα(ανcount
) = fα(αǫcount

) = count.

The resulting summary graph consists of three super vertices V(G′) = {v8, v9, v10} and four

super edges E(G′) = {v10, v11, v12, v13}. Considering vertex v8 as an example one can see that
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it takes the type label User of its underlying vertex group, i.e., Vv8
= {v1, v3, v5, v6} ⊂ V(G),

and shows an additional property (count) that refers to the result of the aggregate function:

κ(v8, fα(ανcount
)) = ανcount

(Vv8
) = 4. Edges are grouped by the super vertices of their

incident vertices as well as their label. For example, edge e10 represents all follows edges

connecting vertices represented by v8, i.e., Ee10
= {e2, e6, e7} ⊂ E(G). On the other hand,

edge e12 represents all memberOf edges pointing from a User to a Forum. Like super vertices,

super edges also store an additional property referring to the result of the aggregate function,

e.g., κ(e10, fα(αǫcount
)) = αǫcount

(Ee10
) = 3.

2.3 Graph Grouping in GrALa

In the remainder of this paper, we will use a domain speciĄc language called GrALa

(Graph Analytical Language) that has been introduced in [Ju16] to express graph analytical

programs in the EPGM.5 In GrALa, graph operators are higher-order functions that can be

parameterized with user-deĄned functions to express custom logic, e.g., for aggregation or

Ąltering. The operator signature for graph grouping is deĄned as follows:

LogicalGraph.groupBy(

vertexGroupingKey [], vertexAggregateFunction [],

edgeGroupingKey [], edgeAggregateFunction []) : LogicalGraph

While the Ąrst argument is a list of vertex grouping keys Kν ⊆ K , the second argument

refers to a list of user-deĄned vertex aggregate functions Λν . Analogously, the third and

fourth argument are used to deĄne edge grouping keys and edge aggregate functions. The

operator returns a new logical graph that represents the resulting summary graph. The

following listing demonstrates how the operator is parameterized to compute the result of

our introductory example of Figure 1(b):

1 LogicalGraph socialNetwork = // initialize logical graph ...

2 LogicalGraph summaryGraph = socialNetwork.groupBy(

3 [: label],

4 [( superVertex , vertices -> superVertex['count '] = vertices.size ())],

5 [: label],

6 [(superEdge , edges -> superEdge['count '] = edges.size ())])

In line 1 we initialize a logical graph representing our social network either from a data

source or from previously executed graph operators. Next, we declare a new variable

summaryGraph and initialize it using the result of the grouping operator. In Figure 1(b) the

social network is grouped according to type labels of vertices and edges. Therefore, we

deĄne vertex and edge grouping keys in line 3 and 5 respectively. In GrALa the symbol

:label refers to the dedicated property key τ representing the type label. Although our

example requires only a single grouping key, it is also possible to deĄne multiple keys

to further diferentiate vertices and edges (e.g., [:label, 'city']). In lines 4 and 6 we

specify anonymous aggregate functions for vertices and edges using common Lambda

notation (e.g., (parameters -> function body)). The vertex aggregate function in line 4

counts the number of vertices represented by a super vertex. The parameters of that function

are the super vertex v
′ ∈ V(G′) and the vertex set {v ∈ V(G) | sν(v) = v

′}. The size of that

set is stored as a new property of the super vertex using the property key count.

5 The Gradoop framework implements GrALa using the Java programming language.
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Fig. 2: Exemplary results for the subgraph and transformation based graph analytical programs. (a)

shows a summary graph computed from a subgraph of the input graph; (b) shows a summary graph of

a heterogeneous input graph; (c) shows a summary graph representing a roll-up operation

2.4 Analytical examples

A fundamental feature of the EPGM is its ability to compose graph operators to complex

analytical programs. In the following, we will exemplify the abilities of the framework

with a focus on graph grouping. Necessary operators will be brieĆy introduced, a detailed

description can be found in [Ju16].

Subgraph grouping

Just like graph grouping, subgraph is a unary graph operator that outputs a single logical

graph. The operatorŠs arguments are user-deĄned predicate functions. Input vertices and

edges will only be passed to the output graph if the respective predicate function evaluates

to true. If there is only a single function deĄned, the operator extracts vertex-induced and

edge-induced subgraphs, respectively.

The combination of subgraph and grouping operator allows the creation of partial summaries

as illustrated by Figure 2(a). Script 1 lists the corresponding GrALa program. First, we

extract a subgraph of a given social network that contains solely vertices of type User

and edges of type follows. Therefore, we deĄne vertex and edge predicate functions in

lines 3 and 4. Both functions take a single element as input and deĄne a condition on the

corresponding type label to check if it matches the required label. During operator execution,

the predicate functions are executed for each vertex and edge contained in the input graph.

Since the output of the subgraph operator is a logical graph, it can be directly used as

input for the grouping operator at line 5. In addition to the label, we further group vertices

(users) based on the city they live in. We also provide further vertex aggregate functions to

compute the minimum and maximum year of birth inside each user group. For simplicity,

we use pre-deĄned aggregate functions provided by GrALa (e.g., COUNT()). In the resulting

summary graph every vertex represents a group of users that share the same property value

for the property key city. Additionally, vertices store the results of the speciĄed aggregate

functions as new properties. Since the EPGM is a schema-less data model, vertex and edge

instances do not necessarily have a speciĄed property. In Figure 2(a) this is reĆected by a

dedicated vertex representing all vertices without property city.
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1 LogicalGraph summaryGraph = socialNetwork

2 .subgraph(

3 (vertex -> vertex [:label] == 'User '),

4 (edge -> edge[:label] == 'follows '))

5 .groupBy(

6 [:label , 'city '], [COUNT(), MIN('yob '), MAX('yob ')],

7 [: label], [COUNT ()])

Script 1: Graph grouping applied to a speciĄc subgraph.

1 LogicalGraph summaryGraph = socialNetwork

2 .subgraph ((edge -> edge[: label] == 'memberOf '))

3 .transform (( vertex -> {

4 if (vertex [: label] == 'User ') then vertex [: label] = vertex['city ']

5 else vertex [: label] = vertex [: label] + vertex['title ']}))

6 .groupBy ([: label], [COUNT()], [: label], [COUNT ()])

Script 2: Type-dependent grouping using vertex transformation.

With such a declarative program, an analyst is now able to explore the structure and

properties of entities and their mutual relationships contained in the underlying social

network. For example, one can easily see that there are more follower relations among

users located in the same city than among users from diferent cities. The program also

demonstrates the Ćexibility of the operator: by adding the property key gender to the vertex

grouping keys, the super vertices in Figure 2(a) could be further divided into groups with

respect to usersŠ gender and reveal more information about the relations between gender

groups from diferent cities.

Type-dependent grouping of heterogeneous graphs

In the previous example, we applied graph grouping to a homogeneous subgraph containing

solely vertices of type User and edges of type follows. However, it might also be necessary

to apply graph grouping on a heterogeneous graph, i.e., to deĄne type-dependent vertex

and edge grouping keys [YG16]. Within the EPGM, this can be achieved by combining

the grouping operator and a preceding graph transformation. The transformation operator

is a unary graph operator that allows the modiĄcation of graph, vertex and edge data

whereas graph structure remains unchanged. The operator is parameterized by user-deĄned

transformation functions that either have graph, vertex or edge data as input. Within these

functions the analyst is able to modify type label and properties of the particular instance.

The operatorŠs output is a new logical graph with identical structure as the input graph but

modiĄed data of its elements. Transformation is typically helpful in data integration and

ETL scenarios [Pe14a, Pe14b] or to pre-process graphs for subsequent graph operators as

in our next example.

In Script 2, we create a summary graph showing diferent forums and their members

under consideration of their cities to analyze local interests. Therefore, we Ąrst extract an

edge-induced subgraph from our social network that solely contains edges of type memberOf

since this relationship connects users with forums. In line 3, we apply a transformation

function on the vertices of our previously extracted subgraph. The function modiĄes a

vertex with respect to its current label: for users, we replace the label by the property value
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1 LogicalGraph summaryGraph = socialNetwork

2 .subgraph ((edge -> edge[: label] == 'follows '))

3 .transform (( vertex -> {

4 vertex['decade '] = vertex['yob '] - (vertex['yob '] mod 10)

5 vertex['country '] = getCountry(vertex['city ']) }))

6 .groupBy ([:label , 'country ', 'decade '], [COUNT()], [: label], [COUNT ()])

Script 3: Graph grouping on property hierarchies using vertex transformation.

associated to their city attribute and, for forums, we concatenate original label and unique

forum title to create a new label. The modiĄed graph is then used as input for the grouping

operator in line 6. Since we projected all necessary information to vertex labels, we can now

group vertices and edges by label and additionally count the particular group members.

An exemplary summary graph is illustrated by Figure 2(b). The grouping operator created a

vertex for each city representing users from that city. Since labels of forum vertices contain

the unique forum title, the grouping operator created super vertices that represent a single

vertex from the input graph. However, users in the neighborhood of these vertices and their

relations to the forums have been grouped. By looking at the number of memberships stored

at super edges, an analyst is now able to conclude about the interests of local user groups.

Graph grouping along property hierarchies

Another application in which transformation increases the Ćexibility of graph grouping is

the consideration of property (or dimension) hierarchies. Here, an analyst wants to group a

graph on diferent levels, e.g., by using a dimension hierarchy like time or location. This

type of operation is also known as roll-up in data warehousing or graph OLAP scenarios

[Ch08, Zh11, YWZ12]. In our social network example, users store year of birth as well

as the city they live in. In Script 3, we use transformation to compute coarser levels of

dimensional hierarchies by mapping years to decades (line 4) and cities to corresponding

countries (line 5). The results are stored in new vertex properties and the respective property

keys are used as vertex grouping keys in the subsequent grouping operator. An exemplary

result of the program can be seen in Figure 2(c). In contrast to Figure 2(a), vertices now

represent users that live in the same country and were born in the same decade. Using such

a high-level view, the summary graph provides useful insights about a network which may

contain millions or even billions of users.

3 Implementation of Graph Grouping in Gradoop

For the implementation of graph grouping and Gradoop operators in general, we have to

cope with two major challenges of big data analytics: the operatorŠs Ćexible integration in

complex analyses as shown in our examples and its scalability for very large graphs with

billions of edges. A now established approach to solve the latter problem is the massively

parallel computation on shared-nothing clusters, e.g., based on the Hadoop ecosystem.

Especially promising is the utilization of distributed dataĆow systems such as Apache Spark

[Za12] and Apache Flink [Ca15b] that, in contrast to the older MapReduce framework

[DG08], ofer a wider range of operators and keep data in main memory between the

execution of operators. The major challenges of implementing graph operators in these

systems are identifying an appropriate graph representation, an eicient combination of
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the primitive dataĆow operators and the minimization of data exchange among diferent

machines.

Our implementation of graph grouping is, like the implementation of all Gradoop operators,

based on Apache Flink. A basic version of the implementation has also been contributed

to Apache Flink.6 We Ąrst give a brief introduction to Apache Flink and its programming

concepts and explain the mapping of the EPGM to these concepts. We then outline

the implementation of graph grouping including an optimization for unbalanced data

distribution.

3.1 Apache Flink

Apache Flink [Ca15b] supports the declarative deĄnition and execution of distributed

dataĆow programs. The basic abstractions of such programs are DataSets and Transfor-

mations. A DataSet is an immutable, distributed collection of arbitrary data objects, e.g.,

Pojos or tuple types, and transformations are higher-order functions that describe the

construction of new DataSets either from existing ones or from data sources. Application

logic is encapsulated in user-deĄned functions (UDFs), which are provided as arguments to

the transformations and applied to DataSet elements.

Well-known transformations have been adopted from the MapReduce paradigm [DG08].

While the map transformation expects a bijective UDF that maps each element of the input

DataSet to exactly one element of the output DataSet, the reduce transformation aggregates

all input elements to a single one. Further transformations are known from relational

databases, e.g., join, group-by, project and distinct. Table 1 introduces the transformations

available in Apache FlinkŠs DataSet API that are relevant for this paper. In addition, Apache

Flink provides libraries for analytical tasks such as machine learning, graph processing

and relational operations. To describe a dataĆow, a program may include multiple chained

transformations and library calls. During execution Flink handles program optimization as

well as data distribution and parallel processing across a cluster of machines.

3.2 Gradoop

The Gradoop open-source library is a complete implementation of the EPGM and its

operators on top of Apache FlinkŠs DataSet API. It can be used standalone or in combination

with any other library available in the Flink ecosystem. Gradoop uses three object types to

represent EPGM data model elements: graph head, vertex and edge. A graph head represents

the data associated to a single logical graph. Vertices and edges not only carry data but also

store their graph membership as they may be contained in multiple logical graphs. In the

following, we show a simpliĄed deĄnition of the respective types:

class GraphHead { Id; Label; Properties }

class Vertex { Id; Label; Properties; GraphIds }

class Edge { Id; Label; Properties; SourceId; TargetId; GraphIds }

Each type contains a system managed identiĄer (Id) represented by a 128-bit universally

unique identifier7. Furthermore, each element has a label of type string and a set of properties.

Since EPGM elements are self-descriptive, properties are represented by a key-value map

whereas the property key is of type String and the property value is encoded in a byte array.

6 https://issues.apache.org/jira/browse/FLINK-2411

7 docs.oracle.com/javase/7/docs/api/java/util/UUID.html
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Name Description

Map

The map transformation applies a user-deĄned map function to each element of the input DataSet. Since the

function returns exactly one element, it guarantees a one-to-one relation between the two DataSets.

DataSet <IN >.map(udf: IN -> OUT) : DataSet <OUT >

Filter

The Ąlter transformation evaluates a user-deĄned predicate function to each element of the input DataSet. If

the function evaluates to true, the particular element will be contained in the output DataSet.

DataSet <IN >. filter(udf: IN -> Boolean) : DataSet <IN>

Project

The projection transformation takes a DataSet containing a tuple type as input and forwards a subset of

user-deĄned tuple Ąelds to the output DataSet.

DataSet <TupleX >. project(fields) : DataSet <TupleY > (X,Y in [1 ,25])

Join

The join transformation creates pairs of elements from two input DataSets which have equal values on

deĄned keys (e.g., Ąeld positions in a tuple). A user-deĄned join function is executed for each of these pairs

and produces exactly one output element.

DataSet <L>.join(DataSet <R>). where(leftKeys ). equalTo(rightKeys)

.with(udf: (L,R) -> OUT) : DataSet <OUT >

ReduceGroup

DataSet elements can be grouped using custom keys (similar to join keys). The ReduceGroup transformation

applies a user-deĄned function to each group of elements and produces an arbitrary number of output

elements.

DataSet <IN >. groupBy(keys). reduceGroup(udf: IN[] -> OUT[]) : DataSet <OUT >

CombineGroup

The CombineGroup transformation is similar to a ReduceGroup transformation but is not guaranteed to

process all elements of a group at once. Instead, it processes sub-groups of all elements stored in the same

partition (i.e., are processed by the same worker). Thus, it can be used to decrease data volume before a

ReduceGroup transformation which otherwise may require shuling data over the network.

DataSet <IN >. groupBy(keys). combineGroup(udf: IN[] -> OUT[]) : DataSet <OUT >

Tab. 1: Subset of Apache Flink DataSet transformations. We deĄne DataSet<T> as a DataSet that

contains elements of type T (e.g., DataSet<String> or DataSet<Tuple2<Int,Int>>).

The current implementation supports values of all primitive Java types and BigDecimal.

Vertices and edges maintain their graph membership in a dedicated set of graph identiĄers

(GraphIds). Edges additionally store the identiĄers of their incident vertices. To represent a

graph collection, Gradoop uses a separate Flink DataSet for each element type. A logical

(property) graph is a special case of a graph collection in which the graph head DataSet

contains a single object:

class LogicalGraph {

DataSet <GraphHead > graphHead;

DataSet <Vertex > vertices;

DataSet <Edge > edges;

}

EPGM operators are implemented using Flink transformations on a logical graphŠs or a

graph collectionŠs DataSets. For example, the subgraph operator is implemented using the

filter transformation to apply user-deĄned predicate functions and the join transformation

to preserve consistency in the output graph. More complex operators like graph pattern

matching use a large number of diferent Flink transformations including iterations.

3.3 Graph Grouping

The graph grouping operator computes a summary graph by applying a series of trans-

formations to the vertex and edge DataSets of an input graph. The algorithmic idea is to

group vertices according to user-deĄned grouping keys and to create a super vertex for each

resulting group. Then, a mapping between the original vertices and the super vertices is
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Fig. 3: DataĆow implementation of the graph grouping operator using Flink DataSets and transforma-

tions. The dataĆow is subdivided into three phases: (1, blue) grouping vertices, (2, purple) building

super vertices and (3, green) building super edges. Intermediate DataSets always contain tuples,

whose Ąelds can be referred to by their position, e.g., GroupBy(1) or Project(0,1). Transformations

denoted with * require inter-partition communication between workers in a cluster.

used to update source and target identiĄers for each edge. Finally, edges are also grouped by

their new source and target vertex and optionally by user-deĄned grouping keys.

Figure 3 illustrates the corresponding dataĆow program from an input logical graph G(V, E)

to an output summary graph G′(V ′, E ′). For the sake of clarity, we grouped multiple

transformations (e.g., Filter + Map) and omitted intermediate results when possible. A

comprehensive pseudocode description can be found online.8 We use diferent colors to

denote the three phases of the algorithm: (1, blue) grouping vertices, (2, purple) building

super vertices and (3, green) building super edges. In Figure 4, we additionally illustrate a

dataĆow instance that computes the ŞType GraphŤ of Figure 1(b). Using the abstraction and

the concrete example, we will now discuss the three phases.

Phase 1: Grouping vertices

In a distributed dataĆow framework it is important to reduce data volume whenever possible

in order to avoid unnecessary network traic. Thus, the Ąrst phase starts with mapping

each vertex v ∈ V(G) to a tuple representation containing only vertex identiĄer and a list of

property values needed for vertex grouping and aggregation.9 For example, in Figure 4, we

map vertex v1 to the tuple (1,[User],[1]) as we require the vertex label for the creation of

super vertices and the property value 1 to compute the count aggregate. Note that grouping

and aggregate values need to be ordered. Vertices (and edges) without a required grouping

value show the Null-value instead. Missing aggregate values are replaced by a default value

determined by the particular aggregate function.10 In Figures 3 and 4, the intermediate

result containing vertex tuples is represented by DataSet V1.

In the second step of phase 1, vertex tuples are grouped by the previously extracted grouping

values (position 1 inside the tuple). Each group is then processed by a ReduceGroup function

8 http://dbs.uni-leipzig.de/Ąle/grouping_pseudocode.pdf

9 In Figure 3, lists of property values are denoted by the type A[].

10 The count aggregate function is implemented as a special case of the sum aggregate function. In that case, the

property value "1" is added automatically.



114 Martin Junghanns, André Petermann, Erhard Rahm

Fig. 4: DataĆow using the graphs from Figure 1(a) as input and Figure 1(b) as output.

which has two main tasks: (1) creating a super vertex tuple for each group and (2) creating a

map between original vertex id and corresponding super vertex id. A super vertex tuple

consists of a new vertex id, the property values representing the group and the results of

the provided aggregate functions. In Figure 4, the intermediate DataSet V2 contains three

highlighted super vertex tuples, one for each vertex label in the input graph. For example, the

tuple (-,8,[User],[4]) represents all vertex tuples with a grouping value User including

the result of the count aggregate function (4). Additionally, the ReduceGroup function

outputs a super vertex-mapping for every member, e.g., (1,8,[],[]) is derived from tuple

(1,[User],[1]) as vertex 1 belongs to super vertex 8.

Phase 2: Building super vertices

In this phase, we construct the Ąnal super vertices V ′ from the previously created super

vertex tuples. Therefore, we need to Ąlter the tuples from the intermediate DataSet V2 and

use a map transformation to construct a new Vertex instance for each tuple. In Figure 4, the

super vertex tuple (-,8,[User],[4]) is mapped to super vertex v8 of Figure 1(b), which

stores the grouping and aggregate values as new properties.

Phase 3: Building super edges

In the last phase, we update the edges of input DataSet E according to their super vertices and

group them to super edges E ′. Similar to phase 1, we Ąrst reduce data volume by mapping

all edges e ∈ E to necessary information. In DataSet E1, each edge is represented by a tuple

containing its source and target id as well as required grouping and aggregate values. For

the next step, we also require the super vertex-mappings from the intermediate DataSet

V2. The mappings are extracted using a Ąlter transformation and we further reduce their

memory footprint by projecting only necessary Ąelds. DataSet V3 now represents a complete

mapping between original vertex id and super vertex id. In the example of Figure 4, vertex

ids 1, 3, 5 and 6 are associated with vertex id 8, while 2 is represented by vertex id 10. We

now join DataSets E1 and V3 on the original vertex ids to update the source and target vertex

id for each edge tuple. Technically, we require separate join operations for both identiĄers

(see pseudocode for details). DataSet E2 represents the updated edge tuples, e.g., tuple

(3,1,[follows],[1]) is updated to (8,8,[follows],[1]), since source id (3) and target
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Fig. 5: Optimized dataĆow for Phase 1.

id (1) are both represented by super vertex id 8. In contrast, tuple (3,5,[memberOf],[1])

is mapped to (8,9,[memberOf],[1]) as source and target vertex belong to diferent super

vertices (i.e., users and forums).

Since the updated tuples in E2 are logically connecting super vertices, we can group them

by source and target id as well as their grouping property values. The creation of super edge

tuples is done in two consecutive steps. First, we use a CombineGroup transformation to

group edge tuples per data partition. Depending on the data distribution, each partition may

contain multiple sub-groups. For each of these sub-groups, the CombineGroup function

produces exactly one local super edge tuple that stores the grouping values and the

results of the aggregate functions for that sub-group. After the CombineGroup step, there

might be two tuples representing the same edge group, e.g., (8,8,[follows],[2]) and

(8,8,[follows],[1]). To create exactly one tuple for each edge group, we again need to

group the local super edge tuples by the same Ąelds, but this time followed by a ReduceGroup

function to guarantee that all tuples representing the same edge group are processed together.

Since the computation logic of both functions is identical, we can use the same UDF in the

combine and reduce step. The output is one super edge tuple, e.g., (8,8,[follows],[3]),

that represents the whole group. Finally, each super edge tuple is mapped to a new Edge

that stores grouping and aggregate values as new properties.

After phase 3, the computed super vertices V ′ and edges E ′ are used as parameters to

instantiate a new logical graph G′. During instantiation, a new GraphHead is created and

graph memberships of super vertices and edges are updated. The logical graph is then

returned to the program and can be sent to either a data sink or subsequent operations.

3.4 Handling unbalanced workloads

In distributed computing, the application of a local combination step is generally useful as it

potentially reduces network traic [DG08, Ma10]. However, the eiciency of the combine

step depends on the physical data distribution: if each worker has one element of each group,

the CombineGroup function has no efect. Nevertheless, it is advisable to add a combine

step if the computation logic permits it. In phase 3, we use a CombineGroup transformation

to map edge sub-groups to local super edge tuples which are then shuled across the network

in the subsequent ReduceGroup transformation. For edges, this step is straightforward as

each sub-group can be processed independently. However, for vertices, the algorithm needs
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Fig. 6: Optimized dataĆow using the graphs from Figure 1(a) as input and Figure 1(b) as output.

to guarantee that all vertices of a group are assigned to the same super vertex. In Figure 4,

this constraint is met by applying a ReduceGroup function directly on the grouped vertex

tuples. Yet, this leads to an unbalanced workload if the group size distribution is skewed

since all group members need to be transferred to the same worker.

Figure 5 illustrates an alternative approach for phase 1. We again start with building

vertex tuples using a map transformation. We then use a CombineGroup transformation

on the grouped vertex tuples which creates DataSet V2. The UDF logic is identical to the

original phase, however, we now create local super vertex tuples potentially representing the

same vertex group. Figure 6 shows an example: V2 contains two local super vertex tuples

representing vertices of type User and mapping tuples contain local super vertex ids. We

now Ąlter local super vertex tuples from V2. Up to this point, the dataĆow does not require

any data shuling over the network. The reduced DataSet is then grouped again by the

grouping values and processed in a ReduceGroup transformation. Here, we apply a diferent

logic: in addition to the Ąnal super vertex tuple, we also create a mapping from the Ąnal

super vertex id to all local super vertex ids representing the same group. In Figure 6, DataSet

V3 contains tuples composed of two tuples: the super vertex tuple (e.g., (-,8,[User],[4]))

and the respective group mapping (e.g., (8,[11,12])).

We extract the super vertex tuples from the composed tuples of V3 using projection and

create Ąnal super vertices in phase 2. Prior to phase 3, we need to update the mappings

between vertices and local super vertices in V2. After Ąltering these tuples from V2, we

replace the local super vertex id by the global one in a map transformation. To achieve this,

we use a Flink feature called broadcasting, which allows distributing an entire DataSet to

all workers in a cluster and reading it in a UDF context. In Figure 6, we highlighted the

DataSet that is being broadcasted to the map function. In this function, we just need to

determine the super vertex id which maps to the current local super vertex id of the tuple. In

the example of Figure 6, the vertex tuple (1,11,[],[]) is updated to (1,8) since the local

super vertex id 11 is represented by super vertex id 8. The resulting DataSet V4 is identical

to DataSet V3 in Figure 3 and is used to create super edges in the Ąnal phase.

In contrast to regular ones, broadcast DataSets are kept in-memory on each worker. Since

the size of group mappings depends on the number of vertex groups and data distribution,

memory consumption of the broadcast DataSet may vary heavily. Before applying the

broadcasting approach, one needs to consider that computation will stop if a broadcast

DataSet exceeds the available main memory of a worker.
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Name |V | |E | Disk size |TV | |TE | |Vτ=Per son | |Eτ=knows |

GA.10 260 K 16.6 M 4.5 GB 8 8 235 K (90.2%) 10.2 M (61.2%)

GA.100 1.7 M 147 M 40.2 GB 8 8 1.67 M (98.4%) 101 M (68.9%)

GA.1000 12.7 M 1.36 B 372 GB 8 8 12.67 M (99.8%) 1.01 B (74.4%)

Pokec 1.6 M 30.6 M 5.6 GB 1 1 1.6 M (100%) 30.6 M (100%)

Tab. 2: Statistics of the social network datasets used in the benchmarks.

4 Evaluation

In the experiments we evaluate the scalability of our implementation with respect to

increasing computing resources and data volume. We further analyze the operatorsŠ runtime

according to the number of grouping keys and aggregate functions. Finally, we study the

efect of a combiner in the vertex grouping phase as described in Section 3.4.

4.1 Experimental setup

We perform our experiments using datasets generated by the Graphalytics (GA) benchmark

for graph processing platforms [Er15, Ca15a]. The generator creates heterogeneous social

networks with a schema similar to our examples and structural characteristics like those of

real-world networks: node degree distribution based on power-laws and skewed property

value distributions [Er15]. We additionally use the Pokec social network11 containing users

including their properties and mutual friendship relations. Table 2 provides an overview

about the used datasets. Since several experiments use GA subgraphs solely containing

vertices of type User and edges of type knows, we include their respective share in the table.

Table 3 shows the diferent conĄgurations of the grouping operator used in the experiments.

ConĄgurations 1 to 4 compute type graphs and are mainly used in the scalability experiments.

In conĄgurations 5 to 13, we use a varying numbers of vertex and edge grouping keys as

well as none, one or multiple aggregate functions. The used datasets either explicitly or

implicitly fulĄll the speciĄed properties. For example, in Graphalytics, a usersŠ location is

encoded by an edge to a vertex of type City. We thus align all datasets to a common schema

in a preceding ETL step.

The benchmarks are performed on a cluster with 16 worker nodes. Each worker consists of

an E5-2430 6(12) 2.5 Ghz CPU, 48 GB RAM, two 4 TB SATA disks and runs openSUSE

13.2. The nodes are connected via 1 Gigabit Ethernet. Our evaluation is based on Hadoop

2.6.0 and Flink 1.0.3. We run Apache Flink standalone with 6 threads and 40 GB memory

per worker. In our experiments, we vary the number of workers by setting the parallelism

parameter to the respective number of threads (e.g., 2 workers correspond to 12 threads).

The datasets are stored in HDFS (default settings) using a Gradoop speciĄc JSON format

and distributed using hash-based partitioning. We tested both operator implementations

described in the preceding section either using a ReduceGroup function (RG) or an additional

CombineGroup function (CG). Runtimes are reported by FlinkŠs execution environment

and include reading the input graph from HDFS and writing the summary graph to HDFS.

In the subsequent results, each datum represents the average runtime of Ąve executions.

11 https://snap.stanford.edu/data/soc-pokec.html
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Config. Vertex keys Vertex aggregate functions Edge keys Edge aggregate functions

1 :label - - -

2 :label COUNT() - -

3 :label COUNT() :label -

4 :label COUNT() :label COUNT()

5 city - - -

6 city COUNT() - -

7 city, gender - - -

8 city, gender COUNT() - -

9 city, gender COUNT(), MIN(yob) - -

10 city, gender COUNT(), MIN(yob), MAX(yob) - -

11 city COUNT() - COUNT()

12 city COUNT() - COUNT(), MIN(since)

13 city COUNT() - COUNT(), MIN(since), MAX(since)

Tab. 3: Diferent conĄgurations for the grouping operator.

4.2 Experimental results

Scalability We Ąrst evaluate absolute runtime and relative speedup of our implementation

using conĄgurations 1 to 4 on Graphalytics 100, 1000 and Pokec. We execute the operator

on each dataset using an increasing number of workers for each run. The runtime results for

Graphalytics 1000 and Pokec are shown in Figure 7(a) and 7(b), respectively. For the largest

graph with 1.3 B edges, we could decrease the runtime from about 30 minutes on a single

machine to 4.5 minutes on 16 workers. For the real-world network with 30 M edges, we

could reduce runtimes to only 10 seconds. Using conĄguration 4, the execution requires

the most time due to the highest data volume and computational cost caused by type labels

and aggregates. However, on both datasets, the runtime is close to conĄgurations 1 to 3.

Figure 7(c) illustrates the relative speedup for conĄguration 1 including Graphalytics 100.

One can see that up to four workers, the speedup is nearly linear and degrades after this.

We assume that this is due to the two data intensive join transformations in phase 3. Here,

the edge tuples need to be shuled across the cluster which makes the network the limiting

resource (also because of its limited bandwidth of only 1 Gbps). In Figure 7(c), we added

the speedup solely for the join operation which aligns with the speedup of the complete

runtime and thus veriĄes our assumption.

We also evaluated scalability with increasing data volume and a Ąxed number of workers.

The results in Figure 7(d) show that the runtime increases almost linearly with the data

volume. Using conĄguration 1, the operator execution required about 30 seconds on GA.100

(40 GB) and 275 seconds on GA.1000 (372 GB).

Operator parametrization In conĄgurations 5 to 13, we parameterized the operator with

a varying number of grouping keys and aggregate functions. We execute the operator on the

User-subgraphs of GA.100 and GA.1000 as well as on the Pokec dataset using 16 workers.

The results are shown in Figure 8. The Ąrst observations are that the execution times for all

conĄgurations vary only slightly and scale almost linearly from GA.100 to GA.1000. By

looking at conĄg. 5 and 7 (or 6 and 8), we can also observe that a higher number of vertex

grouping keys only leads to a small increase in runtime (e.g., 319 seconds for conĄg. 5 and

350 seconds for conĄg. 7 on GA.1000.SG). The increase is caused by a higher number of
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Fig. 7: Evaluation results for the scalability benchmarks.

resulting super vertices and edges, for example, conĄg 5 on GA.1000.SG leads to 1149,

while conĄg. 7 leads to 2298 super vertices.

In conĄgurations 7 to 10 we increased the number of vertex aggregate functions and in

conĄgurations 11 to 13 the number of edge aggregate functions. The latter could only be

executed on Graphalytics since Pokec has no edge properties. The results in Figure 8 show

that a higher number of aggregate functions does not lead to a higher runtime. This is due

to the fact, that in our Reduce- and CombineGroup functions, all aggregates are computed

in a single iteration over the vertex and edge tuples, respectively.

Optimization for data skew We Ąnally study the efect of an additional combination

step in the vertex grouping phase. Since the type label distributions of our datasets are

skewed [Er15], we use conĄgurations 1 to 4 to compute type graphs on 16 workers. The

results are shown in Figure 9. We executed the operator with each conĄguration using

a ReduceGroup function (RG) and an additional CombineGroup function (CG). For the

synthetic datasets, the beneĄt is generally small but more distinctive for the larger dataset.

However, for the real-world dataset, we could achieve an average runtime reduction of about

15%. We believe that this is caused by the fact, that Pokec contains only one vertex type.

Thus, in the ReduceGroup implementation, one worker needs to process all vertices, while

in the CombineGroup implementation, load distribution and network traic are improved

due to a local preprocessing of vertices. For the synthetic datasets this efect is not that

strong since the load distribution is generally better due to the higher number of type labels,

i.e., vertex groups are processed by multiple workers.
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Fig. 9: Comparison of vertex grouping phases.

5 Related Work

Gradoop in general is related to graph processing frameworks on top of distributed dataĆow

systems, e.g., GraphX on Apache Spark [Xi13] and Gelly on Apache Flink [Ca15b]. These

libraries focus on the eicient execution of iterative graph algorithms. However, in contrast

to the EPGM, the implemented graph data models are generic, which means arbitrary user-

deĄned data can be attached to vertices and edges. In consequence, model-speciĄc operators,

e.g., graph grouping, need to be user-deĄned, too. Hence, using those libraries to solve

complex analytical problems becomes a laborious programming task. In contrast, Gradoop

targets the data scientist by providing an abstraction from the underlying framework, in

particular an expressive data model and declarative operators.

Graph grouping is related to the area of online analytical processing (OLAP) on graphs.

Here, attributes of the graph elements are considered as dimensions and a summary graph

(also denoted by aggregate graph) is one of many cuboids in a so-called graph cube. Most

of the publications focus on constructing and querying graph cubes from homogeneous

or heterogeneous input graphs. GraphOLAP [Ch08] Ąrst discusses grouping of single

graphs and roll-up/drill-down and slice/dice operations by overlaying and Ąltering graphs,

respectively. In [THP08], the authors introduce SNAP, an algorithm to construct summary

graphs based on user-deĄned vertex keys and relationship types, and k-SNAP, which produces

k super vertices by separating vertices depending on structural similarity. GraphCube [Zh11]

extends the concepts of [Ch08] by the deĄnition of crossboid queries enabling analysis

through diferent levels of graph aggregations. While the previous approaches focus

on homogeneous [Ch08, THP08, Zh11], vertex-attributed [THP08, Zh11] input graphs,

HMGraph [YWZ12] and GRAD [Gh15] enable analyzing heterogeneous, vertex-attributed

[YWZ12] graphs. HMGraph introduces additional operators on vertex-dimensions while

GRAD proposes an extension to the property graph model that simpliĄes the deĄnition

of hierarchies in a graph cube. In [YG16], the authors introduce type-dependent grouping

of heterogeneous information networks and, like [THP08], also group vertices based on a

similarity function using graph entropy.

There are two previous approaches to compute graph cubes in a distributed fashion: Dis-

tributed GraphCube [DGS13] on Apache Spark and Pagrol [Wa14] on Hadoop MapReduce.

While both are distributed implementations of GraphCube and thus work only on homoge-

neous graphs, Pagrol additionally considers edge attributes as dimensions. The authors show
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that their implementations scale for the computation of the complete graph cube [Wa14] as

well as single cuboids [DGS13].

In contrast to the existing Graph OLAP approaches, the graph grouping operator of

Gradoop is not focusing on the creation of a graph cube containing all possible summary

graphs/cuboids of a heterogeneous network. Instead, we built a framework that not only

focuses on graph grouping, but also allows the Ćexible integration of summary graphs in

combination with other complex graph operations. With regard to real-world data, which is

typically semi-structured and highly dynamic, we consider our approach to be advantageous

in comparison to pre-computing a complete graph cube. Furthermore, our operator provides

user-deĄned aggregation functions, is able to handle semi-structured, heterogeneous data

and allows for the interactive computation and exploration of summary graphs.

6 Conclusion and Future Work

We introduced a graph operator for the eicient, distributed grouping of large-scale, semi-

structured property graphs. As the operator is part of the Extended Property Graph Model,

it can be Ćexibly supplemented with other graph operators to express various analytical

problems. Operator implementations have been contributed to the Gradoop graph analytics

framework as well as to Apache Flink. One major challenge was the eicient mapping

of graph grouping semantics to the abstractions provided by FlinkŠs batch API and, at

the same time, considering the absence of shared memory and the reduction of network

traic. In our experimental evaluation, we could demonstrate that our implementation scales

well with graph size and can achieve very low response times on real-world networks

which is a Ąrst step towards interactive exploration of large, distributed graphs. We could

also show that the implementation handles skewed data distributions by leveraging Flinks

combiner and broadcasting capabilities. However, our experiments revealed that a major

limitation for scalability is data shuling across the cluster. To further improve scalability

of graph grouping and Gradoop operators in general, we are looking into diferent graph

representations and graph partitioning strategies.

Besides runtime optimization, we see multiple directions for future work. First, as targeted

users of Gradoop are data scientists, one goal is to improve our DSLŠs declarativity, e.g.,

to explicitly support type-dependent grouping or OLAP operations. Furthermore, we aim

to add new features required by graph OLAP scenarios, for example, eicient roll-up/drill

down operations and a distributed caching mechanism for summary graphs. Finally, since

many real-world graphs are highly dynamic, i.e., their structure changes over time, we will

investigate in implementing graph operators on dynamic graphs or rather graph streams.

Here, the major challenge is the deĄnition of a graph stream model and operator semantics.
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