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Transformations on Graph Databases for Polyglot

Persistence with NotaQL

Johannes Schildgen1, Yannick Krück2, Stefan Deßloch3

Abstract: Polyglot-persistence applications use a combination of many diferent data stores. Often,
one of them is a graph database to model relationships between data items. The data-transformation
language NotaQL can be used to deĄne transformations from one NoSQL database to a diferent one.
In this paper, we present a language extension for NotaQL to allow graph transformations, graph
analysis, and data migrations on graph databases. NotaQL is schema-Ćexible, it ofers Ąlters and
aggregation functions, and it allows for graph traversal and edge creation. Our graph-transformation
platform can be used for iterative graph algorithms and bulk processing.

Keywords: Data Transformation Language, Graph Databases, NoSQL

1 Motivation: Graph Databases

NoSQL databases are typically classiĄed in four categories: key-value stores, wide-column

stores, document databases, and graph databases. Every NoSQL database has its own

data model, a diferent support for transactions and distribution, and speciĄc beneĄts and

drawbacks. In many enterprises, diferent NoSQL databases are used in combination to

make the best of all. This approach is called polyglot persistence [SF12]. As an example, an

in-memory key-value store manages frequently-updated page-visit counters, a document

database stores user data, and a graph database keeps track of friendship relationships

between the users. Storing everything in a graph database would be possible but slow

because in distributed environments graph databases typically donŠt scale as well as other

systems and they have higher access costs. Therefore, our document store manages the

user data items, and the graph database stores relationships between them. Data-analytic

tasks are executed in speciĄc time intervals to extract information from the graphŮe.g., the

number of friends for each personŮand store it into the document database. Alternatively,

data from the document store can be analyzed to introduce new edges in the graph database,

e.g. to connect people who frequently communicate with each other.

To simplify the development and support the efecient execution of polyglot-persistence

applications [Ge14], not just APIs and frameworks are needed, but also languages and

platforms that can transform and move data from one data store into another. At the heart

of our vision for this data-store interoperability is a language for data transformations

that should support a wide range of database systems with all their speciĄc data-model
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concepts. Diferent from many classical approaches, this language should not unify diferent

data models and cover only their commonalities, but be extensible and allow to introduce

individual language constructs to fully support all of their data model speciĄcs. Otherwise,

the rapidly evolving landscape of NoSQL databases is diicult to support. Our language

NotaQL [SD15, SLD16] addresses the above requirements for data transformations between

diferent NoSQL stores. The language is concise, easy to learn, schema-Ćexible, and

data-model independent. The latter fact is realized by allowing speciĄc language constructs

for every data model and by using an internal data structure that is a superset of all other

supported models. In our previous work, we described how so-called aggregate-oriented

NoSQL stores (i.e., key-value stores, wide-column stores, document databases) are supported

as sources and targets for NotaQL transformations.

In this paper, we signiĄcantly extend NotaQL to support graph databases. The main

challenges we have to address stem from data-model diferences. Aggregate-oriented stores

focus on storing independent items that are typically accessed by an ID and searched

or transformed one after the other. In contrast, graph databases connect items, provide

graph-traversal languages that include powerful access methods, and support graph APIs for

easy access of property values and related items. Item relationships are natively supported

by graph databases and optimized for fast navigation.

The data model of a graph database is a graph in the mathematical sense. G = (V, E)

deĄnes the graph with its vertices and edges. Vertices in a so-called property graph are

semi-structuredŮlike JSON documents in a document store. A vertex can have a list of

property-value pairs, and optional labels. An edge connects two vertices. It has a label, a

direction and also a list of properties. Figure 1 shows a simple property graph with two

vertices connected by one edge.

type : person

_id : 77

name : Kate

age : 37

city : Rome

type : person

_id : 19

name : Jane

age : 35

city : Bern

friend

since:2016-01-01

Fig. 1: A simple property graph G1.

Due to their emphasis on networks of data items, graph databases typically donŠt scale

as well as aggregate-oriented stores. However, they are very important for managing and

analyzing complex connected data, which is often found in social networks or recommender

systems. Typical operations here are traversing the graph by navigating from one vertex to

another and iteratively computing and reĄning node or edge properties. As a consequence,

graph-database languages and platforms difer a lot from classical query languages and

computation frameworks. (Please see Section 6 for a more thorough discussion.)

In polyglot-persistence applications that utilize a combination of diferent systems, frame-

works and languages are needed that can handle both aggregate-oriented data models and

graphs. Here, one main challengeŮin addition to the performanceŮis how a user can

implement algorithms in such a language or framework correctly and eiciently [Ho12].

Lumsdaine et al. [Lu07] state four software design issues, namely Ćexibility, extensibility,

portability, and maintainability. There are many approaches that unify the access to diferent
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stores [Ge14, SGR15, OPV14], but they do not fully support all data-model concepts. Other

systems like ArangoDB [Ar16] use a combination of diferent data models and introduce

a query language that supports all of them. In this paper, we present a platform for graph

transformations with the language NotaQL. Our platform supports all data-model concepts

without introducing a new database system. The NotaQL platform connects to arbitrary

NoSQL databases and executes user-deĄned transformation scripts to perform migrations

from one system into another. In graph databases, NotaQL can easily access and modify

properties as well as traverse and create edges. Other use cases for NotaQL are data migration

and integration tasks. If some database stores relationships as arrays, sub-documents, or

foreign keys, and another system uses a graph database, NotaQL can be used to convert the

data from the Ąrst schema to the second one, and vice versa.

The following list shows the main contributions of our paper:

• We present an easy-to-learn, concise and powerful language for data transformations

on property graphs (based on NotaQL),

• a syntax to access and create properties and edges, and to traverse to neighbors,

• a solution for deĄning iterative graph algorithms,

• a transformations platform to execute NotaQL scripts on diferent graph database

systems,

• an approach for cross-system transformations between graph databases and other

kinds of databases or Ąle formats.

In the next section, we provide a brief overview of NotaQL based on previous work. We then

present our new extension for graph databases in Section 3. In Section 4, we provide details

on implementing graph database support in our transformation platform. After reporting on

an initial performance validation in Section 5, we present related work on existing graph

languages and frameworks in Section 6 and conclude the paper in Section 7.

2 The Data-Transformation Language NotaQL

NotaQL is a language to transform a set of input items into a set of output items. These sets

can be tables in a wide-column store, collections in a document database, or a map in a

key-value store. In these cases, the items are rows, documents, or key-value pairs.

The main part of a NotaQL script are a filter specification that deĄnes which items to

transform, and attribute mappings. A NotaQL script is output oriented. This means that the

attribute mappings deĄne how the output items should look like, i.e. which attributes they

have and how the values of these attributes are computed. Figure 2 shows how a NotaQL

script is logically executed. First, the items are Ąltered by the predicate given in the Ąlter

speciĄcation in the NotaQL script. Afterwards, intermediate items are created by mapping

each item as deĄned in the attribute mappings. The mapped items are then decomposed into

output fragments, and fragments which belong to the same output cell are combined with

reference to the aggregation functions used in the transformation script.

In a wide-column store, the input items are the rows of a table. The ones that fulĄll the Ąlter

are split into cells. A cell z = (_r, _c, _v) is deĄned by the row-id _r of the row where it
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Fig. 2: Logical Execution of a NotaQL Script

originates, a column name _c, and a value _v. The attribute mappings deĄne how to create

output cells based on the input cells. As a Ąrst example, the following script counts all

people older than 17 in each city:

IN-FILTER: IN.age > 17,

OUT._r <- IN.city,

OUT.numPeople <- COUNT()

The NotaQL script uses a Ąlter to process only rows that have a column called age and a

value greater than 17 in this column. The Ąltered rows are split into their cells, and here,

only the cell with the column name city is of interest. Each city cell is used to produce an

intermediate cell z′ = (_r ′, _c′, _v′) where _r ′ is the value of the city cell in the input, _c′ is

the string literal numPeople, and _v′ in each output fragment a 1 because the aggregation

function COUNT() is deĄned as SUM(1). All fragments that belong to the same row (i.e., the

same city) are grouped together and their values are summed up to the Ąnal value.

The NotaQL platform presented in [SLD16] extends the possibilities of NotaQL by not only

supporting wide-column stores, but any kind of aggregate-oriented database. The platform

reads from one database system, Ąlters, transforms and aggregates data, and writes its result

to another system. The output system can be a diferent kind of NoSQL database, or it can

be the same data store. In the latter case, the results are written into a diferent collection or

table, or it can be the same one as the input to modify data in place. A cross-system NotaQL

script starts with the deĄnition of an input and an output engine. Each engine has a name

and speciĄc parameters. As an example, the CSV engine takes the path to a CSV Ąle in a

local or distributed Ąle system. After the engine deĄnition, an optional input-filter clause

can be used to make a selection. The rest of the NotaQL script are attribute mappings. They

deĄne output attributes and how their values are computed based on the input data. Usually,

the Ąrst attribute mapping deĄnes the value of an object ID. In key-value stores, the ID is

called a key; in wide-column stores, it is the row-id. They have to be set in a NotaQL script.

If an ID value is already present in the database, an in-place update of the existing item is

performed, otherwise a new item with the given ID is inserted. Document stores and other

system can automatically generate IDs, so there is no need to deĄne an attribute mapping

for them in that case. Figure 3 shows the syntax of a cross-system NotaQL script.

notaql:

Fig. 3: NotaQL Syntax
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The grammar symbols attr. and value depend on the input and output engine. WhenŮlike

in the example aboveŮa wide-column store is used as the input, the value can be IN._r

(row-id), IN._c (column name), IN._v (column value), or IN.x (value of a given column

x). Analogue for the output attributes. Key-value stores do not have named columns but

only keys and values which can be accessed with IN._k and IN._v. Document stores

use IN._id for a document ID, dot notation (IN.x.y) for accessing sub-attributes, and a

function LIST to create arrays.

The following example reads all key-value pairs of a Redis database that represent user

items and stores them into a MongoDB collection:

IN-ENGINE: redis(database <- 0),

OUT-ENGINE: mongodb(database <- 'test', collection <- 'users'),

IN-FILTER: _k LIKE 'user/%',

OUT.username <- IN._k,

OUT.email <- IN._v

Redis

A

P

I

Engine

MongoDB

A

P

I

Engine

Spark

Fig. 4: Cross-System Execution of a NotaQL Script

The access to the key and value using

IN._k and IN._v is speciĄc for key-value

databases. For the MongoDB output docu-

ments, arbitrary attributes can be set, here

username and email. As no OUT._id is

set, each document will have an automat-

ically generated document identiĄer. No-

taQL is a schema-Ćexible language. One can access the values of all attributes without

knowing their names using IN.*. An attribute name can be returned with IN.*.name().

Accessing only speciĄc attributes is possible with attribute filters: IN.?(name()!='age')

Ąnds all attributes except the age. On the output side, the indirection operator $ can be

used to create new attributes using a derived attribute name, e.g., OUT.$(IN.*.name())

creates the same attributes in output items as the ones found in the input items. While

iterating over a set of attributes using the * or ?, the attribute of the current iteration can be

accessed with IN.@. This way, all attributes together with their values can be copied using

OUT.$(IN.*.name()) <- IN.@.

Figure 4 shows the execution of a NotaQL script on our Apache Spark-based [Za10] platform.

The internal data model of NotaQL is based on the JSON data model because it is the

most powerful data model of the aggregate-oriented stores. All other supported models

and also CSV or JSON Ąles can be mapped to this model. But it comes to its limits when

we want to support graph databases. That is why we present a new approach in this paper

that extends NotaQL by supporting relationships between items, and performing iterative

transformations.

3 NotaQL for Graph Databases

A graph database can be seen as a document store with documents being the vertices and

connections between documents being the edges. If we leave out the edges, the data model
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is the same as for document databases. So, we can reuse the existing NotaQL language for

vertices and properties.

3.1 Item-to-Item (Vertex-to-Vertex) Transformation

We Ąrst focus solely on how vertex information can be access and mapped. So edge

connections are ignored here and will be covered later in Section 3.2. A NotaQL script

deĄnes how to create an output item based on the input. Given a property graph without

edges G1 = (V, ∅) stored in a graph database, NotaQL connects to the input graph G1 and

writes its output to an initially empty graph G2. As described in Section 2, an IN-FILTER

clause can be used to Ąlter input items by a given predicate. All vertices that fulĄll the

predicate are transformed with respect to attribute mappings. Every attribute mapping has

the form OUT.p <- value, where p is the name of a property of the output vertices and

value an arbitrary deĄnition or computation of a numeric, string or diferently typed value.

Here, properties of input vertices can be accessed, literals can be used, and functions can be

called.

The following NotaQL script transforms the graph G1 (the one shown in Figure 1) that is

stored in a Neo4J [Ne16a] database into G2 by performing some selections and projections:

IN-ENGINE: neo4j(path <- '/data/G1'),

OUT-ENGINE: neo4j(path <- '/data/G2'),

IN-FILTER: type='person' && age > 0,

OUT.name <- IN.name,

OUT.year_of_birth <- 2016 - IN.age,

OUT.type <- 'person'

type : person

_id : ...

name : Kate

year-of

-birth

: 1979

type : person

_id : ...

name : Jane

year-of

-birth

: 1981

Fig. 5: Selection and Projection of Vertices; Graph G2

The execution of this transformation works as follows: For every vertex having the label

'person' and an age greater than zero, an output vertex is created with the same name and

a new property year_of_birth. All other properties are discarded. As this transformation

writes its output to an initially empty graph, the concept of a vertex ID is not needed here. In

Neo4J, vertices do have identiĄers, so in this case, they are automatically generated. When

a NotaQL transformation is used to update an existing graph in place, an ID has to be set to

specify whether to change an existing vertex (the one with the given ID) or to insert a new

vertex (if no ID matches).

In the following example transformation, the age value in every person vertex with an age

greater than zero is incremented by one.

IN-ENGINE: neo4j(path <- '/data/G1'),

OUT-ENGINE: neo4j(path <- '/data/G1'),

IN-FILTER: type='person' && age > 0,

OUT._id <- IN._id,

OUT.age <- IN.age+1

type : person

_id : 77

name : Kate

age : 38

city : Rome

type : person

_id : 19

name : Jane

age : 36

city : Bern

...

Fig. 6: In-Place Updates on a Graph

The OUT._id <- IN._id mapping indicates that the current vertex should be updated.

In case the script might produce multiple output vertices with the same ID, the property
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mappings have to either guarantee the equality of all values within each ID group, or they

have to contain aggregate functions. The aggregation function SUM, COUNT, MIN, MAX, and

AVG are used to generate atomic output values for every property. All property values of

output vertices that have the same ID are reduced to a Ąnal value using the given function.

The following transformation produces a new graph G3 that consists of city vertices having

the average age of all people living in this city as a property:

IN-ENGINE: neo4j(path <- '/data/G1'),

OUT-ENGINE: neo4j(path <- '/data/G3'),

IN-FILTER: type='person' && age > 0,

OUT._id <- IN.city,

OUT.city <- IN.city

OUT.avg_age <- AVG(IN.age),

OUT.type <- 'city'

type : city

_id : Rome

city : Rome

avg_age : 37

type : city

_id : Bern

city : Bern

avg_age : 35

Fig. 7: Average Age per City; Graph G3

Because of the trivial functional dependency IN.city→ IN.city and the given property

mapping, the functional dependency OUT._id→ OUT.city holds. This is why the city

property values are equal within each ID group. For the property IN.age, the aggregation

function AVG is used to calculate an atomic output value for the output property OUT.avg_age.

3.2 Traversing Edges in the Input Graph

As shown above, IN. is used to access property values of input vertices. We added the

following three steps to access its edges: IN._e traverses all edges, IN._>e all outgoing,

and IN._<e all incoming ones. With ?-predicates, which were already used in non-graph

NotaQL (see Section 2), the kinds of edges can be further speciĄed; based on their labels

and properties. After an edge step, one can access the edge properties with the simple dot

notation, e.g. IN._e.since, and one can follow the edge to its neighbor vertex using one

more _ symbol. For selecting only speciĄc neighbors, additional ?-predicates can be used.

The neighbor vertexŠs properties and edges can be accessed as usual. E.g., IN._e_.name

returns the neighborŠs name. When iterating over multiple edges, the edge within the current

iteration can be accessed using IN._e[@]. To avoid long lists of edge steps, NotaQL uses

the [min,max] option to follow an edge over multiple hops. The default edge traversal is

exactly one hop: [1,1]. For the transitive closure up to an unbounded number of hops,

[0,*] is used. In that case, termination in cyclic graphs has to be achieved by using proper

predicates. Figure 8 shows the grammar for edge traversals in NotaQL.

Aggregation functions in NotaQL take a list of values and compute one output value. In the

examples in Section 3.1, the lists where created due to the cell groupings. All values that

belong to the same output cellŮi.e., in a graph database, the same property for the same

output vertexŮ, are collected in a list, and an aggregation function combines the values in

this list. NotaQL also allows calling aggregation functions on lists that are not created after

grouping but already existed in the input data. These lists are automatically created when

using ambiguous expressions, e.g. IN.a[*] contains all elements of an array, IN._e_._id

are the IDs of all neighbor vertices.
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edge:

vertexAccess: minmax:

Fig. 8: Syntax for Traversing Edges and Access to Properties

The following NotaQL script shows an example with some edge accesses and aggregations.

IN-ENGINE: neo4j(path <- '/data/G1'),

OUT-ENGINE: neo4j(path <- '/data/G1'),

IN-FILTER: type='person',

OUT._id <- IN._id,

OUT.num_neighbors <- COUNT(IN._e_._id),

OUT.num_old_friends <- COUNT(IN._e?('friend')_?(age>=80)._id),

OUT.num_friends_of_friends <- COUNT(IN._e?('friend')_[1,2]._id),

OUT.oldest_friendship_date <- MIN(IN._e?('friend').since),

OUT.mother_name <- IN._>e?('mother')_.name

The edge predicate ?('friend') is a short form for ?(_l = 'friend'), where _l

designates the edge label. Most edge traversals in this example use the _e path to traverse

an edge independently of its direction. However, to navigate to the motherŠs vertex, the _>e

path selects only outgoing edges. The aggregation functions used in this example are COUNT

and MIN. They are called on lists of property values of neighbor vertices, respectively on

edge properties. When a NotaQL transformation groups multiple vertices, it is possible

that values are lists before grouping. This results in lists of lists after grouping. These are

resolved by using two aggregation functions in combination. The following example shows

how to compute the average number of friends people have per city:

IN-ENGINE: neo4j(path <- '/data/G1'),

OUT-ENGINE: neo4j(path <- '/data/G3'),

OUT._id <- IN.city,

OUT.avg_num_friends <- AVG(COUNT(IN._e?('friend')_._id))

The expression IN._e?('friend')_._id is a list of friend IDs. After grouping by city,

every city vertex contains a list of lists of these IDs. The cardinalities of the inner lists are

computed with the COUNT function. The AVG function computes the average of these count

values.

3.3 Creating Edges

For traversing edges or accessing their properties, we handle edges almost like vertex

properties, as seen above. However, creating an edge is not as trivial as setting a vertex
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property. This is because an edge has a target vertex, a label, a direction, and a list of

properties. We decided to deĄne the target and direction of an edge on the left-hand side

of the mapping arrow <-, and the edge data as parameters of an EDGE constructor on the

right-hand side. This approach is consistent with NotaQLŠs support for other data models

and data types, where the construction of complex objects or list values is speciĄed in a

similar way. The target of an edge is determined by a predicate that matches the target vertex.

If multiple vertices match the predicate, then multiple edges are created. Figure 9 shows the

syntax for edge creation.

outEdge:

Fig. 9: Syntax for Edge Creation

From the current vertexŠs view, OUT._>e creates an outgoing and OUT._<e an incoming

edge to respectively from the vertices that fulĄll the given predicate. The EDGE constructor

function requires a label and a (possibly empty) list of edge properties.

In the following example, two edges are created for every vertex: The Ąrst one says that

everybody is a friend of Sam, and the second one is an edge to each personŠs grandmother4:

OUT._id <- IN._id,

OUT._>e?(name = 'Sam') <- EDGE('friend'),

OUT._>e?(_id = IN._>e?('mother' || 'father')_._>e?('mother')_._id)

<- EDGE('grandmother', via <- IN._>e[@]._l)

Within the latter ?-predicate, the ID of the grandmother vertices are searched, and edges

are created to the vertices having this ID. The edge is an outgoing one; it has the label

grandmother and one property via. The term IN._e[@]._l navigates to the current edge

that is bound in the edge-target predicate and reads its label. So the value of the via property

is either 'mother' or 'father'. If a vertex does not have a mother or father edge, or if the

neighbor does not have a mother edge, the predicate is evaluated to false for every vertex. In

this case, no grandmother edge is created. Multiple paths to the same vertex do not result

in the creation of multiple edges. But if a person has multiple mother or father edges to

diferent vertices, the equality predicate checks for list containment so that multiple edges

would be created. Same if more than one person is named Sam. Then friendship edges are

created to all of them.

3.4 Iterative Computations

Many graph algorithms that change the graph in place have to be executed multiple times to

produce the Ąnal result. In NotaQL, we therefore introduce the REPEAT: n clause, which

can be used to run a transformation n times. The repeat iteration also stops if the graph has

not changed since the previous iteration. For REPEAT: -1, the computation runs as long as

4 In this and the following examples, we omit the IN-ENGINE and OUT-ENGINE clause when the output graph is

the same as the input graph, i.e., for in-place updates. We also omit the IN-FILTER, which should be used to

only apply the transformation on vertices with a speciĄc label.
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the graph changes. Another possibility is to monitor the change of a single given vertex

property (property(p%)), and to stop as soon as the change of this property value is below

a certain percentage p for all vertices. Figure 10 shows the syntax of a REPEAT clause.

repeat:

Fig. 10: Repeat Clause

The following example shows the PageRank [Pa99] algorithm in NotaQL. It uses a global

function NumVertices(), which returns the number of vertices in the graph.

OUT._id <- IN._id, # initialization

OUT.pagerank <- 1/NumVertices();

REPEAT: pagerank(0.0005%), # main iteration

OUT._id <- IN._>e_._id,

OUT.pagerank <- SUM(IN.pagerank/count(IN._>e._id))

PR(p) =
1

N

PR(q) =
∑

p∈in(q)

PR(p)

|out(p)|

Fig. 11: PageRank

There are two transformations. After having initialized the graph with pagerank = 1/N for

all verticesŮwith N being the number of verticesŮthe iterative part of this NotaQL script

is then executed until all PageRank values change less than 0.0005% within one iteration.

For a given input vertex p, the PageRank values of all neighbors q ∈ out(p) via the outgoing

edges are inĆuenced. The Ąnal value of qŠs PageRank is the sum of all PageRank values

from vertices like p divided by their out-degree. It can be seen in Figure 11 that the NotaQL

deĄnition is very similar to the original PageRank formula. Improvements like a damping

factor [Pa99] can easily be added into the NotaQL script.

3.5 Modeling Relationships in Non-Graph Databases

Not all applications use graph databases to store relationships between data items. We want

to present three popular schema approaches that are often found in relational and NoSQL

databases to model graphs using data-model concepts like tables, lists or nested objects.

During this discussion we show (non-graph) NotaQL scripts that work with these schema

approaches and transfer one representation into another. Later, we present cross-system

transformations between a graph database and a non-graph database that uses one of the

three presented schemes.

Vertex and Edge Table This schema is often found in relational databases to model

graphs. A vertex table has a primary-key column for a vertex ID, a type column for the label,

and one column for each property. The edge table consists of two foreign-key columns for

the source and target vertex IDs, also one column for the label, and one for each property.

For querying and transforming the data, the two tables need to be accessed multiple times
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and joined to traverse the graph, once for every hop. As NoSQL databases try to avoid joins,

this approach is mostly used in relational databases. Furthermore, the properties have to

be deĄned in advance, and every vertex can only have one label. This can be solved by

introducing separate label and property tables [Su15]. Tables 1 and 2 show the schema of

the graph shown in Figure 1.

id type name age city

77 person Kate 37 Rome

19 person Jane 35 Bern

Tab. 1: Vertex Table

source target label since

77 19 friend 2016-01-01

Tab. 2: Edge Table

Adjacency Lists Adjacency lists and adjacency matrices are the most common ways to

represent graphs for mathematical computations. While adjacency matrices are rarely used

in databases or Ąles, the lists are often found to store graphs, e.g., in CSV Ąles. Every line

in this Ąle represents a vertex. The Ąrst value in one row contains a vertex ID, the other

values are IDs of neighbors via outgoing edges:

77,19,28,39,21

19,40,28

The same graph can be represented in a wide-column store (see Table 3). Here, multiple

column families can be used to both store vertex properties and neighbors in one table

[Ch08]. Instead of leaving the column values empty, they can also hold edge properties.

row-id friends info

77 19:- 28:- 39:- 21:- name:Kate age:37 city:Rome

19 40:- 28:- name:Jane age:35 city:Bern

Tab. 3: Adjacency Lists in a Wide-Column Store

Adjacency lists are also often found in document databases in the form of arrays. Again,

vertex properties and outgoing edges can be stored within one single JSON document.

We want to show a NotaQL transformation to convert a vertex and edge table into this

schema. We do this by taking the edge table (see Table 2) as the input, construct lists of

neighbor-vertex ids, and write these lists in the original vertex table (see Table 1).

OUT._id <- IN.source,

OUT.$(IN.label) <- LIST(IN.target)

The indirection operator $ is used to produce individual lists for every edge label. The result

documents look like this:

{ _id: 77, name: "Kate", age: 37, city: "Rome",

friend: [ 19, 28, 39, 21 ] }

Nested Objects Forming Tree Structures If the data items form tree structures, relation-

ships between items can be modeled by nesting them. In a document store, we use an array

of sub-documents to model edges to these sub-documents. The following example shows a

blog post with comments that can again be commented:
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{ _id: 1420733, user: "Kate", text: "I'm in Berlin now",

comments: [{ user: "Carl", text: "Have fun!" },

{ user: "Jim", text: "I'm also in Berlin!",

comments: [{ user: "Kate", text: "Let's meet!" }]}]}

All these variants are often found in databases. But for complex graphs, they are not

applicable. This is because writing programs and queries over such schemata is hard,

analysis and transformations are slow, and joins are often not supported. The solution are

graph databases which ofer special query languages and a better performance.

3.6 Cross-System Graph Transformations

In polyglot-persistence environments, it is often necessary to transfer or copy data from

one data store to another. As graph databases exhibit worse horizontal scalability than for

example document stores, it is a popular approach to use a graph database only for storing

relationships between items, while the itemŠs properties are stored in a document store.

The grammar in Figure 12 is a modiĄed version of Figure 3 from the beginning of this

paper. With the graph-database extension of NotaQL, it is possible to mix the usage of

graph and other databases in the IN-ENGINE and OUT-ENGINE deĄnition. For each engine,

dataŰmodel-speciĄc language constructs can be used, e.g. IN._k and IN._v for a key-value

store or IN._e for a graph database as input. All this is part of the deĄnition of the value

symbol in Figure 12.

notaql:

Fig. 12: Syntax for Cross-System NotaQL Transformations with Edge-Creation Option

In the next example, we want to show a typical data transformation, namely a data-migration

task from MongoDB to Neo4J. As MongoDB does not support direct relationships between

documents, a one-to-n relationship for a personŠs status updates can be modeled as a list of

nested sub-documents, and an n-to-m relationship for friendships can be modeled as an

adjacency list of the friendsŠ IDs. Figure 13 shows one input document and the desired

output of the documents-to-graph transformation.

Using the following script, the data is transformed into a graph with person and status

vertices plus the connecting edges.

#1. create status vertices

IN-ENGINE: mongodb(database<-'socialnet', collection<-'people'),

OUT-ENGINE: neo4j(path <- '/data/socialnet'),

OUT._id <- IN.status[*].sid, OUT.ts <- IN.status[@].ts,

OUT.text <- IN.status[@].text, OUT.type <- 'status';
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{ _id: 77, name: "Kate", age: 37,

status: [

{ sid:714, ts:1448269379,

text:"I'm in Berlin now!!!"},

{ sid:788, ts:1448372647, text:

"The currywurst museum is amazing!"}

], friends: [ 19, 78, 81, 103 ]

}

type : person

_id : 77

name : Kate

age : 37

type : status

_id : 714

ts : ...379

text : I‘m...

type : status

_id : 788

ts : ...647

text : The...

f
r
i
e
n
d

f
r
i
e
n
d

... ... ... ...

Fig. 13: Left: Input as JSON Documents; Right: Output as a Graph

#2. create person vertices and edges to their statuses and friends

IN-ENGINE: mongodb(database<-'socialnet', collection<-'people'),

OUT-ENGINE: neo4j(path <- '/data/socialnet'),

OUT._id <- IN._id, OUT.name <- IN.name, OUT.age <- IN.age,

OUT._>e?(type='status' && _id=IN.status[*].sid) <- EDGE('posts')

OUT._>e?(type='person' && _id=IN.friends[*]) <- EDGE('friend'),

OUT.type <- 'person';

There are two transformations. The Ąrst one creates status vertices. A new vertex is created

for every element in each personŠs status list. With [*], we iterate over the list. While

iterating, the current element can be accessed with [@]. For the example document in Figure

13, two status vertices are created. In the second transformation, the person vertex is created.

There, an edge links to every status vertex and other edges to the friends. As we explain in

the next section, edges are created at the very end of a transformation. So, it is guaranteed

in this case, that the target vertices of friendship relationships existŮassumed that there

are no dangling references in the input database. Usually, the list of friends in the input is

symmetric, so KateŠs friend Jane will have KateŠs ID in its friends list. To avoid the creation

of edges in both directions, one can simply add && _id>IN._id. Then, the friendship edge

points from the vertex with the smaller ID to the one with the larger one. The typical way

to model symmetric relationships in graph databases is creating an edge in an arbitrary

direction. At query time, an edge is traversed independently of its direction.

A transformation in the opposite direction, i.e. from a graph database to a diferent database,

is possible with the edge-accessing steps shown in Section 3.2. To reverse the transformation

in Figure 13, the following NotaQL script can be used:

IN-ENGINE: neo4j(path <- '/data/socialnet'),

OUT-ENGINE: mongodb(database<-'socialnet', collection<-'people'),

IN-FILTER: type='person',

OUT._id <- IN._id,

OUT.name <- IN.name, OUT.age <- IN.age,

OUT.status <- LIST(OBJECT(sid <- IN._>e?('posts')_._id,

ts <- IN._e[@]_.ts, text <- IN._e[@]_.text)),

OUT.friends <- LIST(IN._e?('friend')_._id)
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The transformation is performed for every person vertex. It creates person documents in

which the status attribute is a list of objects, Ąlled with property values of neighbor

vertices using the outgoing posts edges. For friends, only the vertex IDs are retrieved to

create a list of foreign keys. In the given example, we used the constructor functions LIST

and OBJECT, which are speciĄc for document stores as an output.

As there are also input and output engines for CSV and JSON Ąles, NotaQL can be used to

easily import and export graphs.

4 Realization

While our implementation in [SLD16] is based on Apache Spark [Za10], we developed

our graph transformation prototype as a simple Java tool. This is because we found no

good framework that supports the diferent data models of graphs and simple datasets

properly. The other reason is that graph databases are usually accessed with their own API

and not with frameworks because they are typically not stored in a distributed system with

multiple machines. We decided not to use the direct API of a graph database but to use the

graph-database gateway Tinkerpop Blueprints [Ap16] (see Figure 14). This gateway gives a

uniĄed access to diferent graph database systems like Neo4J, Titan [Ti16], Tinkergraph

[Ap16] and many others. This way, we support a magnitude of various stores at the same

time. One drawback is that Blueprints does not support vertex labels. As seen in the previous

examples, we used a type property for storing it.

Neo4J Blueprints

BlueprintsNeo4J

Java

Fig. 14: NotaQL-Script Execution on Graphs

A graph-to-graph transformation is done in

Ąve steps:

1. Parsing

2. Vertex Access and Pre-Filter

3. Input Filter

4. Creation of Vertices

5. Creation of Edges

In iterative algorithms, the steps (2) to (4) are repeated until the stop condition is fulĄlled.

For parsing in step (1), we use the ANTLR [Pa16] parser and lexer. Step (2) uses the

Blueprints method getVertices(String key, Object value) to Ąnd a superset of all

vertices of interest. As this method only checks for equality on one single property, complex

input-Ąlter predicates have to be converted into the conjunctive normal form (CNF) Ąrst.

After that, one clause that only consists of one equality literal, can be used for pre-Ąltering

with the getVerticesmethod. If there is no such single-equality-literal clause, or if there is

no input Ąlter at all, all vertices are received. But in fact, in typical NotaQL transformations

there is such a equality literal, namely a type predicate (e.g., type = 'person').

In step (3), our algorithm iterates over all found vertices from step (2) and Ąlters out the

ones that violate the input Ąlter. If Blueprints adds a support for complex predicates in the

future, or if we change the implementation so that it uses the native graph-database API,

step (3) can be dropped.
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Within the iteration over the input vertices, new vertices are created and the attribute

mappings in the NotaQL script are performed (step (4)). Simple property mappings like

OUT.a <- IN.b or OUT.a <- 5 can be easily evaluated to create an output vertexŠs

property values. Traversals over edges in the input graph are converted into method calls

of the Blueprints API to navigate to neighbors. Aggregation functions that are applied on

lists in the input can also be easily evaluated by retrieving all values from neighbors and

computing the aggregated result, e.g. a sum. Aggregation functions after grouping are more

complex to evaluate as they combine data from multiple input vertices. One solution would

be grouping all output vertices by their ID and afterwards applying a reduce function to

produce one single vertex for every group. This behavior is similar to MapReduce [DG04]

or Spark [Za10]. But these frameworks split the data into chunks and distribute them over a

cluster of machines. In our case, all data has to be kept in memory of our computing node.

Our solution is simple and efective: The aggregation functions are ignored Ąrst. When the

output vertex is written into the target graph database, this write is done in an incremental

fashion with reference to the given aggregation function. For example, if the function is

MIN, the property value is overwritten only if it is smaller than the current one. If it is SUM,

the current property value is incremented by the new one.

Step (5) starts as soon as all vertex creations are completed. In that step, our algorithm

iterates again over all input vertices that fulĄll the input Ąlter. Then it evaluates the OUT._id

deĄnition and all edge creation parts. With this information, it can produce all edges between

vertices in the output graph.

Tinker-

graph

MongoDB

A

P

I

Engine

JSON

A

P

I

Engine

Spark

Blueprints

BlueprintsNeo4J

Java

Fig. 15: Cross-System Execution of NotaQL be-

tween a Graph and a diferent NoSQL Database.

For cross-system transformations, we com-

bine our existing Spark-based platform

[SLD16] and the graph-to-graph transfor-

mation platform presented in this paper.

This way, we combine the beneĄts of both

worlds: The Ąrst system is optimized for

aggregated stores and Ąles and supports

distributed storage and computation. The

second one works directly on graphs so that

connections between data items are sup-

ported as native data-model concepts. Both

platforms communicate with each other us-

ing a common in-memory graph database

Tinkergraph [Ap16] as an intermediate for-

mat. A transformation from a graph to a

non-graph system uses the given NotaQL

script to produce a Tinkergraph without edges. After that, a generic Tinkergraph-to-JSON

tool is executed to produce a JSON Ąle that can be read by the Spark-based platform to

write the output in the target database. A transformation in the opposite direction, i.e.,

from a non-graph to a graph database, produces the intermediate JSON Ąle Ąrst. This one

is converted into a Tinkergraph, and the Tinkergraph is the input for a graph-to-graph

transformation that produces the output. Both the intermediate JSON Ąle and Tinkergraph

do not contain edges. We perform query rewriting to move the edge access and creation
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part of a NotaQL script to the graph platform. The result is a fast execution that involves

diferent kinds of databases and data models.

Figure 15 shows the execution of a transformation from a MongoDB collection to the graph

database Neo4J. The NotaQL script is rewritten so that it writes the (Ąltered) MongoDB

documents into a JSON Ąle. After that, the generic JSON-to-Tinkergraph tool is used to

create a Tinkergraph. This Tinkergraph acts as an input for the NotaQL graph-transformation

platform that writes the result into Neo4J using the rewritten NotaQL script.

5 Initial Validation

We ran some initial experiments to validate our general approach in terms of feasibility and

performance, For that, we used a single machine with a double-core Intel i3 M 370, 2.4

GHz and 3 GB of memory. As a test database, we used a subset of the data of the Slovenian

social network Pokec [TZ12] in JSON format. Our test dataset consists of 15, 000 vertices

and 200, 000 edges. Diferent from our examples above, friendships are asymmetric, so if A

has a friend B, this does not imply that B also has a friend A. The data from [TZ12] consists

of one collection of person documents, and one containing the relationships between them.

This corresponds to the vertex/edge-table schema described in Section 3.5. In a Ąrst step,

we combined both collections into person documents with adjacency lists. These documents

look like this:

{ "_id":"14943", "user-id":"14943", "username":"14943",

"avatar":"185 cm, 65 kg, ????asi:d",

"follower": ["8303"], "following": ["8934","544"] }

In [Pa15], a complex Java program is presented to import such a graph that is stored in a

JSON Ąle into Neo4J. The program iterates over all JSON documents and creates Cypher

statements to create vertices for every person and statements to add the edges between them.

The list of statements is written into a Ąle, which is then executed on Neo4J. We tested the

proposed program on our Pokec database. It took 207 minutes to import the data into Neo4J.

With NotaQL, the transformation can be expressed in only four short lines of code and the

import needed only 95 seconds. In applications where we have much larger data sets, the

solution that generates Cypher statements is not suitable because it would need many days

for the import.

In a second experiment, we imported the Pokec dataset into a MongoDB database. We used

the MongoDB aggregation pipeline to compute the number of friends plus the number of

friends of friends for every person. The algorithm starts with unwinding the following

array, grouping by the ID, and counting the direct neighbors. Then, the number of indirect

neighbors are added to this number by performing a $lookup operation and another

grouping and counting. This computation took 23 minutes. Next, we formulated the query

as an NotaQL script. As neither the input nor the output is a graph database, we cannot apply

the NotaQL graph-transformation platform here directly. So, we Ąrst load the MongoDB

collections into an in-memory Tinkergraph, and apply the friends-of-friends computation
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on this, using the MongoDB output engine. All in all, this job took only 40 seconds, so we

have a speed-up of more than 3,000%.

6 Related Work: Graph Languages and Frameworks

The three most common ways to work with a graph database are (1) working with the

database-speciĄc API to Ąnd, create, and modify vertices and edges of a graph, (2)

using a graph query language, and (3) utilizing a graph-processing framework. The API

methods provide eicient access to individual vertices and support a simple graph traversal.

Application developers can directly use these methods to work with graph databases.

However, for complex tasks like data analytics or iterative computations, much code needs

to be written. A NotaQL script can be written in one minute and executes the same complex

graph transformation. As an alternative to APIs, graph query languages like Gremlin and

Cypher can be used. Gremlin [Ro15] belongs to the Tinkerpop [Ap16] stack and uses the

common Blueprints API for graph databases. Thus, Gremlin is widely supported. A query

consists of multiple steps such as Ąlters to select vertices and edges based on their labels

or properties, traversal steps to move to neighbor edges or vertices, or aggregation steps.

Side-efect steps can be used to store intermediate values in variables so that they can

be accessed in later steps. Gremlin is easy-to-use and powerful for reading, but not for

graph transformations. For vertex and edge creation, there are only simple methods that are

typically only used to modify one single vertex or edge. NotaQL also uses the Blueprints

API and thus, it supports all graph databases that are supported by Gremlin. However,

NotaQL is used for the tasks Gremlin cannot do, namely complex graph transformations.

Another language is Cypher, the graph query language for Neo4J [Ne16a]. Its syntax is

similar to SQL and consists of pattern-matching elements like in SPARQL [Pr08]. A MATCH

clause is used to deĄne a pattern that is searched for in the whole graph. In this pattern,

variable names can be introduced. For every match, the rest of the query is executed. This

can be a WHERE clause for Ąltering, a RETURN clause to return a result for each match, or a

writing clause like UPDATE, CREATE or DELETE to modify the graph in place. While this

allows for set-oriented graph transformations, Cypher has restrictions with respect to the

complexity of these transformations. In writing clauses, no aggregation functions can be

used. Furthermore, Cypher does not support iterative algorithms, it cannot properly handle

Ćexible schemata or transform metadata into data and vice versa. NotaQL supports all these

features and it allows for cross-system transformations. Cypher queries can only be based

on one single graph, and they can only change the graph in place.

There are many graph-processing frameworks that are optimized for distributed graph

processing. Pregel [Ma10] and its open-source implementation Apache Giraph [Av11] are

frameworks to deĄne an iterative algorithm as a user-deĄned function that is called on

every vertex. Within this function, the properties and neighbors of a vertex can be accessed,

properties can be modiĄed, messages can be sent to neighbors, and incoming messages

from the previous iteration can be processed. These frameworks are typically not used for

computations on graph databases but on graphs stored in a Ąle, a relational database or a

wide-column store. NotaQL supports both graphs in one of these formats and also graph

databases. Furthermore, there is no need to have programming skills. One simple writes a
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concise script to map input data to the output. The data-processing framework Apache Spark

[Za10] has a component called GraphX [Xi13] which supports iterative graph analysis

similar to Pregel. The graph has to be stored in a vertex table and an edge table. However,

again, this framework is not used to work on graph databases. There are Spark connectors

for graph databases, e.g. for Neo4J, but they ofer a Ćattened look on the graph without

the information about vertex neighbors. Edges can be traversed by writing Cypher queries

within Spark methods. In our graph extension for NotaQL, edges are Ąrst-class citizens. It

natively supports the full graph data model and not just a greatest common divisor between

graphs and aggregate stores.

Spark can be used to implement a cross-system transformation from a graph database to a

diferent database. However, these kinds of transformations do not work in the opposite

direction, and they only work on simple graphs. There are special tools for graph imports and

exports, but no generic ones like our NotaQL platform. The Neo4J Doc Manager [Ne16b]

is a tool that loads documents from MongoDB [Mo16] into the graph database Neo4J. A

vertex is created for every document d and one for every of their sub-documents s with an

edge between d and s. This is very restricted and requires an extra efort on the source and

target side before and after the import process to bring the data in the desired format. With

the other languages and frameworks presented above, graph transformations to or from a

diferent kind of data store are not possible.

Green-Marl [Ho12] is a language for graph analysis. It can be used to compute scalar values

from the graph or a property for every vertex. Users can develop algorithms in a few lines

of code which is then optimized and compiled into eicient parallel C++ code. Green-Marl

is not a query or transformation language, but a programming language especially for

graphs. Thus, users need to write code that deĄnes how to compute a result, not what the

result should beŮas in SQL or NotaQL. In the paper, the authors claim that the PageRank

algorithm can be expressed with 15 lines of code, in contrast to its native implementation in

C++, which has 58 lines. As shown in Figure 11, the PageRank deĄnition in NotaQL has

only 5 lines of code.

7 Conclusions and Future Work

As a summary, we presented a language extension for NotaQL to deĄne graph transformations

as short transformation scripts. This way, we showed the extendability of NotaQL for complex

data models. The language is more powerful than existing graph languages, it supports graph

traversal, edge access and creation, and iterative algorithms. NotaQL can be used to modify

a graph in place, to produce new graphs, and perform graph analytics using groupings and

aggregations. We presented an approach for cross-system graph transformations between

a graph database and any kind of NoSQL database or Ąle format. For this, we used

system-speciĄc NotaQL engines and a combination of the Apache Spark framework and

the Blueprints API for graphs. Our dataŰmodel-independant language fully supports the

diferent data models, not the greatest common divisor of those. For that, we use tailored

access paths for each model: graphs, documents, key-value pairs, tables, Ąles, and more.



Transformations on Graph Databases for Polyglot Persistence with NotaQL 101

The most complex ones are graphs. For those, we presented an powerful and intuitive syntax

to work with edges, neighbor vertices and their properties.

Our results show that our platform is very fast in graph transformations. This is because a

NotaQL script is directly executed on a graph database using an API, not an intermediate

query language. Cross-system transformations between graph and non-graph databases use

the combination of the Blueprints API and the Apache Spark framework for distributed

computations.

The NotaQL graph-transformation platform fulĄlls the four requirements for graph-process-

ing software described in [Lu07]. It is flexible regarding data models and the data schema,

extensible through user-deĄned engines and functions, portable to diferent database systems,

and maintainable as a NotaQL script is concise and well understandable.

For future work, we want to improve the performance by integrating our Spark-based and

graph-transformation platform closer. Instead of using an intermediate JSON Ąle, we want

to build a Tinkergraph engine for the Spark-based platform. This way, the in-memory graph

database Tinkergraph can be accessed with Spark like a document store. After that, we

plan more performance evaluations and tests. As the NotaQL language is independent of

its implementation, more eicient implementations based on systems like Apache Giraph

[Av11] or Green-Marl [Ho12] can follow.
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