
Reverse Engineering
Top-k Join Queries

Kiril Panev
panev@cs.uni-kl.de

Sebastian Michel
smichel@cs.uni-kl.de

Nico Weisenauer
n_weisenau10@cs.uni-kl.de

2

Bruce	Campbell 1000
John	Doe 749.90
Adam	Miller 199.99

SELECT c.name, max(o.price)
FROM customers c,

orders o
WHERE c.customer_id = o.customer_id
AND c.country = ‘England’
GROUP BY c.name
ORDER by max(o.price) DESC
LIMIT 3

reverse
engineer

Top-3	Customers

• Alternative queries
• Different joins

• List from other source
• A customized result

can be produced by modifying the query

• Finding explanatory SQL Queries
• E.g., for crowd-sourced top-k rankings

• Related Work
• E.g., [Zhang et al., SIGMOD ‘13], [Psalidas et al., SIGMOD ‘15]
• Do not handle top-k queries with aggregations

3

Why and Where?
SELECT c.name, max(o.price)
FROM customers c,

orders o
WHERE c.customer_id = o.customer_id
AND c.country = ‘England’
GROUP BY c.name
ORDER by max(o.price) DESC
LIMIT 5

Customer	ID Name Country Balance

1 John	Doe England 250.49

2 Adam	Miller England 124.56

7 Sam	Burns Scotland 154.67

12 Benjamin	
Smith

Wales 1955.22

50 Bruce	
Campbell

England 45.99

… … … …

Order	ID Customer ID Price Date

1 1 24.50 11/28/14

2 1 749.90 04/01/15

23 2 22.49 12/01/11

24 2 199.99 12/30/12

78 50 1.99 10/01/12

79 50 1000.00 02/27/15

… … … …

Customers Orders

entity score

Bruce	Campbell 1000.00

John	Doe 749.90

Adam	Miller 199.99

L

4

Customer	ID Name Country Balance

1 John	Doe England 250.49

2 Adam	Miller England 124.56

7 Sam	Burns Scotland 154.67

12 Benjamin	
Smith

Wales 1955.22

50 Bruce	
Campbell

England 45.99

… … … …

Order	ID Customer ID Price Date

1 1 24.50 11/28/14

2 1 749.90 04/01/15

23 2 22.49 12/01/11

24 2 199.99 12/30/12

78 50 1.99 10/01/12

79 50 1000.00 02/27/15

… … … …

Customers Orders

entity score

Bruce	Campbell 1000.00

John	Doe 749.90

Adam	Miller 199.99

L

entity score? score?

5

Customer	ID Name Country Balance

1 John	Doe England 250.49

2 Adam	Miller England 124.56

7 Sam	Burns Scotland 154.67

12 Benjamin	
Smith

Wales 1955.22

50 Bruce	
Campbell

England 45.99

… … … …

Order	ID Customer ID Price Date

1 1 24.50 11/28/14

2 1 749.90 04/01/15

23 2 22.49 12/01/11

24 2 199.99 12/30/12

78 50 1.99 10/01/12

79 50 1000.00 02/27/15

… … … …

Customers Orders

entity score

Bruce	Campbell 1000.00

John	Doe 749.90

Adam	Miller 199.99

L

entity score

SELECT c.name, max(o.price)
FROM customers c,

orders o
WHERE c.customer_id = o.customer_id
AND c.country = ‘England’
GROUP BY c.name
ORDER by max(o.price) DESC
LIMIT 5

6

Challenges

• Given a database 𝑫 and an input list 𝑳

• Minimum database interaction
• Avoid query execution

• Identify queries that would be
the best candidates in producing 𝑳

7

We want to find 𝑄 such that 𝑄(𝐷) = 𝐿

The PALEO-J Framework

8

SELECT entity, score
FROM A, B, …
WHERE A.id = B.a_id …
AND P1 and P2 and …
GROUP BY entity
ORDER BY 2 DESC
LIMIT k

reverse
engineer

join
predicateentity score

Bruce	Campbell 1000.00

John	Doe 749.90

Adam	Miller 199.99

[Panev,	Michel,	EDBT	2016]

Find	Join
Predicates

Ranked	
Candidate	Joins

Top-k	list

Valid	Queries

Find	Predicates	and	
Ranking	Criteria

Candidate	Query	
Validation

Outline

• Introduction
• Problem Statement

• PALEO-J
• Finding Join Predicates

• Optimizations
• Experimental Evaluation
• Conclusion

9

Finding Join Predicates
1 2

3

4

56

10

Find	Predicates,	
Ranking	Criteria,	and
Candidate Query	

Validation

Step 1: Schema Exploration
Customer	ID Name Country Balance

1 John	Doe England 250.49

2 Adam	Miller England 124.56

7 Sam	Burns Scotland 154.67

12 Benjamin	
Smith

Wales 1955.22

50 Bruce	
Campbell

England 45.99

… … … …

Order	ID Customer ID Price Date

1 1 24.50 11/28/14

2 1 749.90 04/01/15

23 2 22.49 12/01/11

24 2 199.99 12/30/12

78 50 1.99 10/01/12

79 50 1000.00 02/27/15

… … … …

Customers Orders

entity score

Bruce	Campbell 1000.00

John	Doe 749.90

Adam	Miller 199.99

L

entity score? score?

11

Step 2: Tree Building

• Build a tree by following key constraints, starting from the
table containing the entity column to a pre-defined depth 𝑑

• Tables containing score columns are marked red

12

Customer1

Nation1 Orders1

Region1 Customer2 Supplier1 Customer3 Lineitem1

...

Step 3: Join Chain Building

• A join chain has to contain the table with the entity column
and at least one table with a score column

13

Step 4: Node Merging

• Merge nodes that correspond to the same database tables
• Each merge step generates a new query graph

14

Step 5: Query Building

• Build the SQL query statement from the query graphs

• Calculate the cost of queries by estimating join result sizes

• Rank the join candidates by cost 15

Step 6: Instance Verification

16

SELECT A.entity, *
FROM A, B, C
WHERE A.id = B.id
AND B.id = C.id
AND A.entity = ‘e1‘

Decision Tree for Validity
of a Candidate Join

B * C * E
E

17

L.v

100

∘	∈ {+,×}

Advanced Optimization

• AVG priority list:
• Check if the score comes close to the mean value

of a column

• MAX priority list:
• Check columns for inclusion of score values

• SUM/SUM-of-2 priority list:
• Check if the sum of a column matches the score

• Candidate joins in priority lists will be checked first!

18

Advanced Decision Tree

19

Query Discovery with PALEO-J

20

Find	Join
Predicates

Ranked	
Candidate	Joins

Top-k	list

Valid	Queries

Find	Predicates	and	
Ranking	Criteria

Candidate	Query	
Validation

Outline

• Introduction
• Problem Statement

• PALEO-J
• Finding Join Predicates

• Optimizations
• Experimental Evaluation
• Conclusion

21

Experimental Evaluation

22

• TPC-H Dataset 10GB
• Workloads
• 43 Queries based on TPC-H
• with 1-3 joins
• adjusted to create supported query types

• Maximum depth 𝑑 is set to 5
score: max(A), avg(A), sum(A), sum(A+B), sum(A∗B), no-agg

Most	of	the	queries	are	found	by	inspecting	the	first	candidate	join!

We find all of the queries!
Number	of	candidate	joins	examined	until	a	valid	query	is	found	

23

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 8 AVG

N
u

m
b

e
r

o
f

a
p

p
e

a
ra

n
ce

Executed candidates until match was found

Baseline
Advanced

24

Average	runtime	of	the	different	steps	in	finding	the	join	predicate

The	overhead	in	the	advanced	approach	a	small	cost	to	pay
compared	to	the	benefit	in	the	next	steps

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

 3.2

 3.6

Baseline Advanced

T
im

e
 in

 s

Step1

Step2

S3+S4+S5

Instance
Verification

Average	runtime for	finding	a	valid	query	by	different	query	graph	size

25

TPC-H

The	advanced	approach	outperforms	the	baseline

PALEO-J 17

 0

 10

 20

 30

 40

 50

 60

BASELINE ADVANCED

T
im

e
 i
n

 s

AVG

MAX

SUM

S2P

S2S

NO�

(a) 1-Join

 0

 50

 100

 150

 200

 250

 300

 350

 400

BASELINE ADVANCED

T
im

e
 i
n

 s

AVG

MAX

SUM

S2P

S2S

NO�

(b) 2-Joins

 0

 100

 200

 300

 400

 500

 600

 700

BASELINE ADVANCED

T
im

e
 i
n

 s

AVG

MAX

SUM

S2P

S2S

NO�

(c) 3-Joins

Fig. 12: Average time to find queries with different query graph size |Q|

If the basic PALEO-J framework without any optimizations was used to run the experiments,
we refer to it as the baseline approach, otherwise, we refer to the advanced approach when
all of the optimizations were utilized. Note that in the evaluation we focus on identifying
the join conditions of the query. Finding filtering predicates and ranking criteria is discussed
in depth in our previous work. Furthermore, the reported results focus on efficiency of
discovering the first valid query in the results that are presented.

Finding a matching query. First, we want to point out that all of the 46 queries have been
successfully reverse engineered by the PALEO-J framework, regardless of whether the
baseline approach or the advanced approach was applied.

The goal of the optimizations of the advanced approach is to improve the ranking of the
candidate join queries, which are given as input to the next steps of the framework. The
optimal ranking has the query which is most likely to be a match at the top of the candidate
list. Therefore, we show the quality of the ranking by inspecting how many candidate joins
have to be executed until a matching query is found.

Figure 11 shows this statistic for the two presented approaches. On average, the advanced
approach inspects approximately two queries to find a match while the baseline approach
needs about three inspections. The baseline has many cases of inspecting five queries before
finding a match and even has a single case where eight inspections were needed. Depending
on the time needed to inspect a single candidate query, the difference between inspecting
three or two candidate queries on average may be significant, as the following experiments
show.

The process of finding a matching query consists of the six steps to generate the candidate
list and further finding filtering predicates and ranking criteria by the framework until a
matching query is discovered. Figure 12 displays the average time until a matching query
is found, grouped by the different scoring functions supported by our framework and the
number of joins. While data labeled with AVG, MAX and SUM directly stems from reverse
engineering queries using the corresponding aggregation functions, S2P and S2S refers to
queries using the sum of the product or the sum of the sum of two columns. Finally, the label
NO corresponds to data stemming from reverse engineering queries with no aggregation
function.

Conclusion

• PALEO-J reverse engineers top-k join queries
• Find join predicates
• 6-step approach

• Advanced approach
• Overhead in Instance Verification improves

candidate join ranking

• Always discovers a valid query
• Average of 2 candidate join examinations

with the advanced approach

26

Use-Case:	Exploring Databases

27

Image References

• [1]	http://cdn2.hubspot.net/hubfs/51294/Product_Site/Images/Engineering_-_Hover.png?t=1453269935144
• [2]	http://gounconventional.com/files/2011/11/tf2_engineer_by_cutekakashi.jpg
• [3]	https://www.asme.org/getmedia/8fec1f0b-f060-4fc9-92b8-f22844957835/Engineering-and-Business-A-Combination-for-

Success_hero.jpg.aspx

28

