
Comparative Evaluation for Recommender Systems for

Book Recommendations

Araek Tashkandi1, Lena Wiese2, Marcus Baum3

Abstract: Recommender System (RS) technology is often used to overcome information overload.
Recently, several open-source platforms have been available for the development of RSs. Thus, there
is a need to estimate the predictive accuracy of such platforms to select a suitable framework. In this
paper we perform an offline comparative evaluation of commonly used recommendation algorithms
of collaborative filtering. They are implemented by three popular RS platforms (LensKit, Mahout,
and MyMediaLite) using the BookCrossing data set containing 1,149,780 user ratings on books.
Our main goal is to find out which of these RSs is the most applicable and has high performance
and accuracy on these data. We consider performing a fair objective comparison by benchmarking
the evaluation dimensions such as the data set and the evaluation metric. Our evaluation shows the
disparity of evaluation results between the RS frameworks. This points to the need of standardizing
evaluation methodologies for recommendation algorithms.

Keywords: Recommender System, LensKit, Mahout, MyMediaLite, Book recommendations.

1 Introduction

In this age of Big Data, we face the problem of acute information overload of the available

online data. Thus, it is difficult for users to find items matching their preferences. Many

researchers focus on building tools to help users obtain personalized resources [Ga07].

One example of this qualified intelligent system is the recommender system (RS). Rec-

ommender systems have become a significant component in e-commerce systems since

directing users to relevant content is increasingly important today. RSs have been applied

in different application domains, such as entertainment, content, e-commerce and services.

Some examples of these applications are Amazon.com (that recommends books, CDs and

other products) and MovieLens (that recommends movies). One of the application areas

where the RS shows its value is book recommendation, which is the focus of this paper.

Recently, a large scale of open-source platforms has been available for the development

of RSs. The selection of the foundational platform is an important step in developing

the RS. Thus, there is a need to evaluate the quality in terms of predictive accuracy of

such frameworks. In this paper we get inspired by [SB14], and we perform an offline

comparative evaluation of commonly used recommendation algorithms of collaborative

1 King Abdulaziz University, Faculty of Computing and Information Technology, 21589 Jeddah, Kingdom of

Saudi Arabia, asatashkandi@kau.edu.sa
2 Georg-August-University Goettingen, Institute of Computer Science, Goldschmidtstr. 7, 37077 Goettingen,

Germany, wiese@cs.uni-goettingen.de
3 Georg-August-University Goettingen, Institute of Computer Science, Goldschmidtstr. 7, 37077 Goettingen,

Germany, marcus.baum@cs.uni-goettingen.de

B. Mitschang et al. (Hrsg.): BTW 2017 – Workshopband,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 291



filtering. They are implemented by three popular RS platforms (LensKit, Mahout, and

MyMediaLite). We use the book ratings data set from BookCrossing (BX) from [Zi05].

The data set contains 278,858 users providing 1,149,780 ratings on 271,379 books. The

evaluation is performed by internal evaluation methods (i.e. evaluation methods that are

implemented by the frameworks). Our main goal is to find out which of these RSs is the

most applicable and has high performance and accuracy on these data and in general for

the book recommendation. Keep in mind the challenges of RSs evaluation as described by

[He04] and [SB14] and the difficulties of such a result comparison due to the differences

in evaluation and recommendation algorithms implementations. Therefore, in order to

reach our goal, we mainly try to make a fair objective comparison of the recommendation

accuracy of these RSs by considering the benchmarking of the evaluation dimensions such

as the data set, data splitting, recommendation algorithms (including their parameters) and

the evaluation method and metric. Our evaluation shows the disparity of evaluation results

between the common RS frameworks even with benchmarking the evaluation dimensions.

2 Background

A RS learns about a user’s needs and then proactively recommends information that meets

his needs. Recommender systems are defined as “software agents that elicit the interests

and preferences of individual users explicitly or implicitly and make recommendations

accordingly” [XB07]. Three dimensions or models can describe the RS environment: users,

data and application. In order to design a RS, the designer has to make choices that are

related to the algorithms of the recommendation method, the system architecture and user

profile. These choices are constrained by the environment models of the recommender.

There are various techniques of how recommendations are generated by a RS. Depending

on the information that the system gathers and the technique that is used to generate the

item recommendations, the RSs can be classified into different types. The most common

recommendation approaches are: content-based, collaborative filtering (CF), hybrid and

knowledge-based approach [Ja11]. This paper discusses the CF recommendation approach.

In the CF approach to predict the items that the current user will most probably like, the

past behavior or opinions of the system’s existing user community need to be exploited.

Basically, its idea is based on “if users shared the same interests in the past, they will also

have similar taste in the future” [Ja11]. It takes the matrix of user-item ratings as an input.

It gives an output of numerical rating prediction of the degree that the current user likes or

dislikes a specific item.

In order to evaluate a RS some aspects must be specified including the data set, the

evaluation method and the performance metric:

∙ Data Set:
Ekstrand et al. [ERK11] state that in order to evaluate a RS that is developed for a

particular context, a data set which is relevant to that context is used. Herlocker et

al. [He04] describe the properties that make a data set a best model for the tasks the

RS is evaluated for. There are several publicly available data sets that are used for

evaluating the RSs. These data sets are helpful in many cases: they provide a basis for

292 Araek Tashkandi, Lena Wiese, Marcus Baum



comparing the performance of a new algorithm against a known performance of an

existing system, and in case of building a new system they can be used in preliminary

testing. Some examples of these publicly available data sets are MovieLens, Jester,

BookCrossing, and Netflix data sets.

∙ Recommender System Quality Features:
There are some features that are considered when evaluating the RS and contribute

to the system success and affect the user experience. The three commonly used RS

properties from [Be13], [He04] and [SG11] are: (1) Prediction Accuracy where the

RS with high accuracy recommends the most relevant items. (2) Coverage is the

percentage of items in the data set that the RS is able to provide predictions for. (3)

Diversity refers to the diverse features that the recommended items have. As stated

by [SG11] the empirical evaluation of RSs has focused on evaluating the accuracy.

∙ Evaluation Methods:
There are two designs or experimental settings to evaluate the RS and to compare

several RSs [ERK11] and [GS09]. Online Evaluation is evaluating the RS while

involving real users to use the system to perform real tasks. Offline Evaluation is

based on the train-test setup in machine learning. It is performed by using a pre-

collected data set of user ratings on items. By this data set we simulate the behavior

of user interaction with a RS. Offline evaluation is commonly used in evaluating RSs

since it is reproducible and easy to conduct and is not risky since it does not require

the involvement of real users.

∙ Evaluation Metrics for Performance Measurement:
In order to conduct a comparative evaluation for a set of candidate recommendation

algorithms, some quality and performance features are measured by using evaluation

metrics. We measure the prediction accuracy in evaluating the frameworks. The

most popular metric that is used for evaluating accuracy of predicted ratings is Root

Mean Squared Error (RMSE). RMSE measures the distance between the predicted

preferences and the true preferences over items (i.e. the ones given by users in the

test set). For the predicted rating pu,i of user u and item i, the true rating ru,i and data

set size n it can be computed as follows [SG11]:

RMSE =

√

1

n
∑
u,i

(pu,i − ru,i)2 (1)

3 Related Work

Researching evaluation of RS platforms, [Ek11] implement an evaluation of LensKit, and

[SW12] perform an evaluation of Mahout. Said and Bellogin [SB14] perform a comparative

evaluation of the three RS frameworks Mahout, LensKit and MyMediaLite. For each

framework they perform an external controlled evaluation using a toolkit and an internal

evaluation using the frameworks internal evaluation methods. They show disparity of

evaluation results between the three recommendation frameworks both in the frameworks

internal evaluations as well as in the external controlled evaluation.

Comparative Evaluation for Recommender Systems for Book Recommendations 293



The experimental work of evaluating the RS frameworks in this paper is based on [SB14].

They performed the evaluation to find if such a comparison is possible, while we perform

a comparative evaluation of the frameworks to find out which of these RSs is the most

applicable and has a high performance and accuracy on our used data and in general for

book recommendations. Similar to [SB14], we use publicly available data for evaluating

the RSs. However, our work differs from theirs in some aspects. First, their evaluation

by framework internal evaluation methods was based on two different evaluation metrics

since they state there is no common evaluation metric between the frameworks. They used

Normalized Discounted Cumulative Gain (nDCG) to compare LensKit with Mahout and

Root Mean Squared Error (RMSE) to compare LensKit with MyMediaLite. This results in

an ambiguous cross-system evaluation of the three framework RSs. However, we identified

RMSE as a common metric between the three frameworks which we use to compare all

of them. Second, [SB14] show that the disparity of evaluation results occurs in both the

external controlled evaluation as well as in internal frameworks evaluation; however, their

internal framework evaluation was not by the same evaluation metric. Thus, we perform and

focus only on an evaluation that uses the framework internal evaluation methods. Moreover,

in their evaluation they use Movielens 100k data set, while we use the BX data set which is

much bigger with higher sparsity. This shows the frameworks’ performance, accuracy and

capability in such a case using a unified evaluation metric.

4 Experiment and Evaluation

For evaluating the RS capabilities of the three frameworks, we use the internal evaluation

methods. In order to perform a fair comparison, we benchmark the evaluation dimensions as

will be described in this section. The experiment was run on a computer with Windows 10

Home (v.1511), 8 Gb RAM, Intel R○ Core(TM) i7-5500U 2.40GHz CPU, a 64-bit operating

system and a x62-based processor. For Mahout and LensKit the Java JDK 1.7.0_79 is used.

The LensKit evaluator groovy file was executed directly from Windows shell. Mahout was

executed by NetBeans IDE 8.1 by creating a Java application in a Maven project and adding

Mahout in the dependencies occurring in pom.xml file. MyMediaLite was run on a Mono

version 4.2.3.

A natural starting point to evaluate recommender output is to measure the accuracy of

prediction [ERK11]. To evaluate each of the three frameworks, the RMSE is computed and

compared.

4.1 Data Set

As specified in [SB14], to ensure reproducibility and replicability, documenting the research,

using open data, following standards and using best practice algorithms is mandatory.

Therefore, we looked for publicly available data sets. As in this paper we focus on book

recommendations; hence we select the BookCrossing (BX) data set. The BX data set is

collected by a 4-week crawl during August-September 2004 [Zi05]. It is a collection of

294 Araek Tashkandi, Lena Wiese, Marcus Baum



book ratings containing 278,858 users providing 1,149,780 ratings (explicit and implicit)

on 271,379 books. In addition, the BX data set is also used in some RS evaluations such as

[Zi05] and [GS09].

The BookCrossing data set includes three files or tables. The one we use in our evaluation

experiment is the Book-Ratings table including user ID, ISBN and the associated ratings in

a scale from 1 to 10 for explicit ones and 0 for implicit ones. In order to use this data set in

our evaluation, it should be validated with the frameworks required format. After analyzing

the data set we discovered many invalid ISBNs: such as there are around 1455 ISBNs with

letters and around 885 ISBNs with symbols. In total, there are 2,340 invalid ISBNs. After

cleaning the invalid ISBNs out, of 1,149,780 ratings we retain 1,147,440 ratings with valid

ISBNs.

Evaluating the frameworks with using this cleaned and validated data set gives a high value

of RMSE around 4 which means low prediction accuracy. [Zi05] describe the BookCrossing

data set as extremely sparse (i.e. there are a lot of items and few ratings per user). Therefore,

we had to condense the data to reduce the sparsity. Thus, we condense the data by removing

the implicit ratings with a zero value proceeding in the same way as [GS09]. The implicit

ratings are basically no ratings, so we ignore them. From the data set serving only valid

ISBNs, 715,019 out of 1,147,440 are implicit ratings. After removing all the implicit ratings,

the final data set contains 77472 users, 183744 items and 432,421 ratings. The frameworks

split the data set during the evaluation process. LensKit and MyMediaLite evaluators

provide cross validation data splitting. The Mahout evaluator lacks cross validation. Instead

it creates hold-out partitions according to a set of run-time parameters.

4.2 Recommendation Frameworks

∙ LensKit: LensKit (LK) is an open source RS software that was developed by re-

searchers at Texas State University and GroupLens Research at the University of

Minnesota including contributions from developers around the world [Ek11]. It can

be used for two purposes: for building a recommender application or for research. It is

implemented in Java. The current version at the time of writing was 2.2.1. It provides

ready to use implementations for these recommender algorithms: item-based CF,

user-based CF, matrix factorization and slope-one.

∙ Mahout: Apache Mahout (AM) from [Fo16], is an Apache Software Foundation

project of a well-known machine learning tool. It is an open source library containing

several machine learning algorithms. It mainly focuses on the following three areas

of machine learning: recommender engines collaborative filtering, classification

and clustering. Similar to LensKit, Mahout is developed in Java. At the time of

writing it reached version 0.10.1. The algorithms provided by Mahout are available

as non-distributed (i.e. executed by a single machine) as well as distributed (i.e.

MapReduce, executed in parallel in large clusters of thousands of nodes). In our

scenario, we use the non-distributed case for the comparison purpose with the other

RS frameworks. For the collaborative filtering algorithms, Mahout implements these

algorithms: user-based CF, item-based CF and matrix factorization.

Comparative Evaluation for Recommender Systems for Book Recommendations 295



∙ MyMediaLite: MyMediaLite (MML) from [Ga11], was developed at Hildesheim

University. At the time of writing, it had reached version 3.11. It is an open source

software that provides a library of RS algorithms for the Common Language Runtime

(CLR, often called .NET). It is developed in C and it can be run on different platforms,

such as Linux, Windows and Mac OS X supported by Mono. It supports ready to

use implementations for the two common scenarios in collaborative filtering: rating

prediction and item prediction from positive-only feedback, which are combined

with various recommender methods for each.

4.3 Algorithmic Details

The main goal of this paper is a fair comparative evaluation of three selected frameworks.

Thus, to achieve this goal we benchmarked our comparison by controlling the evaluation

dimensions, by using the same data set as explained in the previous section, and by selecting

the same recommendation methods, algorithms and metrics. The common recommendation

approach implemented by the RS frameworks is the collaborative filtering. They implement

memory-based CF and model-based CF methods. A full list of the common methods within

the frameworks is given in [SB14].

∙ Memory-based CF Algorithms: The rating matrix is held in memory and is directly

used for generating the recommendation. The recommendations are issued based

on the relationship between the queried item and the rest of the rating matrix. The

common implemented methods by the frameworks are neighborhood-based methods

[Ja11]:
A User-based CF algorithm predicts the rating to which degree a specific user u

will like a certain item p by getting the rating matrix as input and identifying the

nearest neighbors k or the users that had similar preferences to the active user u. Then

it gives out the numerical rating prediction of an item p that has not been seen yet by

the active user, based on the neighbor users’ ratings of p. Similar to the user-based CF,

the Item-based CF algorithm takes the ratings matrix as an input and it identifies

the nearest neighbors k or the items that have similar rating compared to the current

item p that we want to compute the prediction for. Then it gets the active user’s

rating of these similar items to compute his rating for item p, which is the average of

them. For computing the similarity, Pearson correlation and Cosine similarity are the

similarity methods that can be used [ERK11].

∙ Model-based CF Algorithms:
The ratings matrix is first processed offline and at the run time the precomputed

model makes predictions. It uses data mining and machine learning algorithms to

find patterns in the training data. Then it builds the model that can be fit on the

test data. The rating prediction and the recommendations are issued based on the

built model. The common implemented method by the frameworks is the matrix

factorization Singular Value Decomposition (SVD). It is inferred from item rating

patterns which is used to characterize both items and users by vectors of factors. An

296 Araek Tashkandi, Lena Wiese, Marcus Baum



item is recommended when a high correspondence between the item and user factors

exists [SB14].

5 Result and Discussion

5.1 User-based CF algorithm

While evaluating the user-based CF algorithm, we use both of the similarity methods

Pearson and Cosine with various neighborhood sizes k. Table 1a shows the evaluation

results in terms of RMSE, generated by the frameworks of the user-based CF algorithm

with the Pearson correlation method. In general, we observe that the LensKit (LK) prediction

accuracy outperforms the Apache Mahout (AM) with different neighborhood sizes by 1.4%

of the difference between the averages of the RMSE of both frameworks. However, with the

neighborhood size k of 5, the AM gives a lower RMSE than the LK by 0.2% for the same

neighborhood size, and lower by 0.2% for the lowest RMSE of the LK. Table 1b shows

the evaluation results in terms of RMSE, generated by the frameworks of the user-based

CF algorithm with the Cosine similarity method. The difference between the accuracy

predictions of the frameworks is not as high as in the previous case. Furthermore, the AM

outperforms the LK by 0.02%; the average of the AM’s RMSE is 1.9234 and the average of

the LK’s RMSE is 1.9457. However, there is no big difference between the lowest RMSE

of the AM, which is 1.854 and of the LK, which is 1.943. Consequently, we conclude that

LK performs better than AM in the user-based CF algorithm. MyMediaLite (MML) was

not able to complete the user-based CF evaluation, since it requires too much memory to

finish the process. In [SB14] the authors experienced the same problems.

Various neighborhood sizes are tested to identify the best neighbors to consider and to

discard the remaining users. However, the best neighborhood size for the accuracy differs

between the frameworks. For instance, the best neighborhood size in the user-based CF

algorithm with the Pearson method of the AM is 5, whereas in the LK is 10.

(a) User-based CF with Pearson correlation

Parameters RMSE of LK RMSE of AM

k=5 1.942345021 1.734362382

k=10 1.938357458 2.14859848

k=30 1.94569808 3.436938497

k=50 1.943045692 3.642906765

k=100 1.941659419 3.686270042

k=200 1.944997373 3.697794514

k=400 1.944071748 3.697794514

k=600 1.94546677 3.697794514

k=1000 1.943604582 3.697794514

k=1500 1.944357718 3.697794514

(b) User-based CF with Cosine similarity

Parameters RMSE of LK RMSE of AM

k=5 1.949359429 1.854495873

k=10 1.94548228 2.123300997

k=30 1.94519585 1.9428385

k=50 1.945271313 1.974455281

k=100 1.944991072 1.900317615

k=200 1.947228137 1.903636759

k=400 1.945185463 1.888266977

k=600 1.944815753 1.886360028

k=1000 1.943080086 1.880583559

k=1500 1.946471742 1.880583559

Tab. 1: Results of evaluating user-based CF

Comparative Evaluation for Recommender Systems for Book Recommendations 297



5.2 Item-based CF algorithm

For evaluating the item-based CF algorithm we use both similarity methods Pearson and

Cosine. As shown in Table 2, AM has the lowest RMSE and is outperforming the LK in the

Cosine similarity method by 0.4%.

Algorithm Parameters RMSE of LK RMSE of AM

IBPea no parm 1.953229033 2.240947847

IBCos no parm 1.962735886 1.579909495

Tab. 2: Results of evaluating item-based CF with Pearson correlation and with Cosine similarity

Similar to the user-based evaluation, we were not able to evaluate the item-based CF in

MyMediaLite. We can relate the MML problem to the sparsity problem of the data we used.

Thus, we conclude the MML is not advisable if the used data is too sparse. In general, the

problem of sparsity data does not only affect the RS performance (e.g. it requires too much

memory or time), it also has an impact on the accuracy of the recommendation algorithm,

as observed by [He04]. Since we use a low density and high sparsity data set, we conjecture

that the computation performance and the prediction accuracy of the CF recommendation

algorithms are affected. On a denser data set the three frameworks might perform better.

5.3 Model-based CF Algorithm

In addition, we compare the three frameworks in terms of run time of building and evaluating

the algorithm SVD. We experienced that the LK is the fastest and the MML is the slowest,

as shown in Table 3. Even though the MML is the weakest with the sparse data in the

user-based and the item-based CF algorithms, it gives the highest accuracy in the SVD

algorithm evaluation.

SVD method takes two parameters: 1) the number of latent factors or features (f) the

users and items are characterized by, and 2) the number of iterations (i) for training and

computation:

Parameters RMSE of LK Time RMSE of AM Time RMSE of MML Time

f=50, i=10 1.926852438 8min 2.294968976 15min 1.720527 45min

f=50, i=20 1.925003523 10min 2.416660616 27min 1.69042 2h

Tab. 3: Results of evaluating Singular Value Decomposition (SVD)

5.4 Discussion of Results

To summarize, after evaluating the three RS frameworks using the sparse BookCrossing

data set, we observe that the evaluation results of LK’s RMSE values are more consistent in

the three recommendation algorithms, and in general in most of the cases its RMSE values

are lower than the ones of AM. AM’s RMSE values fluctuate, but the lowest RMSEs are

better than the ones of LK. LK’s performance in terms of the run time is the fastest. In

298 Araek Tashkandi, Lena Wiese, Marcus Baum



addition, we observe that AM performs in the Cosine similarity better than in the Pearson

correlation method. By using this sparse data we conclude that not all the RS frameworks

are able to deal equally with too sparse data. Comparing to the other frameworks, the MML

is the weakest in dealing with sparse data sets in the user-based and the item-based CF

algorithms. It requires too much memory to finish the process and it takes the longest time

to finish the SVD algorithm. Nevertheless, it gives the lowest RMSE in the SVD algorithm

comparing to the other RSs. However, our presented result is limited to our used data set,

which has sparsity problems that affect the prediction accuracy and the performance of the

frameworks.

Even though we benchmarked the comparison dimensions such as the used data set and

the algorithms with the parameters, there were difficulties to fairly compare the evaluation

of the three RSs. As we mentioned, most of the RS literature points to the challenges

of RS evaluation. The reason lies in the performance discrepancies and the disparity of

the evaluation results of the same settings and algorithms with its parameters between

the recommendation frameworks. For instance, our comparative evaluation of the SVD

algorithm with the same parameters gives a 72% difference in the RMSE of the AM and

the MML, and a 24% difference in the RMSE of the LK and the MML. Moreover, there is

a higher than 100% difference in the RMSE of evaluating LK’s and AM’s user-based CF

with the Pearson correlation method with the same neighborhood size parameter k of 200.

Similarly, Said and Bellogin [SB14] encounter this problem of disparity of the evaluation

results between the recommendation frameworks. They linked it to the differences in the

implementations of the evaluation and recommendation algorithms in the frameworks.

6 Conclusion

For implementing a Recommender System (RS) by using open-source platforms, the most

suitable platform has to be chosen after evaluating the considered frameworks. In this

paper we perform an offline comparative evaluation of commonly used recommendation

algorithms of collaborative filtering that are implemented by three popular RS platforms

(Apache Mahout (AM), LensKit (LK) and MyMediaLite (MML)) using the BookCrossing

(BX) book ratings data set. The performance and the accuracy of the implemented RSs

differ based on the circumstances of the use case and may differ when evaluating them by

using other data sets with different characteristics. Even though we used identical settings,

we encountered difficulties of making a fair comparative evaluation of the three RSs. The

reason for this is the performance discrepancy and the disparsity of the evaluation results.

Many related research articles have discussed the RS evaluation. However, the effective

evaluation of RSs is still challenging since 2004 [He04]. There is no practical rule for

evaluating the RSs and the recommendation algorithms. Thus, we need a development of

more standardized evaluation methodologies for RSs and for recommendation algorithms.

References

[Be13] Beel, J.; Langer, S.; Genzmehr, M.; Gipp, B.; Breitinger, C.; Nürnberger, A.: Research
Paper Recommender System Evaluation: A Quantitative Literature Survey. In: Proceedings

Comparative Evaluation for Recommender Systems for Book Recommendations 299



of the Workshop on Reproducibility and Replication in Recommender Systems Evaluation
(RepSys) at the ACM Recommender System Conference (RecSys). ACM, pp. 15–22,
2013.

[Ek11] Ekstrand, M.; Ludwig, M.; Konstan, J.; Riedl, J.: Rethinking The Recommender Re-
search Ecosystem: Reproducibility, Openness, and LensKit. In: Proceedings of 5th ACM
Conference on Recommender Systems RecSys. ACM, pp. 133–140, 2011.

[ERK11] Ekstrand, M.; Riedl, J.; Konstan, J.: Collaborative Filtering Recommender Systems. Foun-
dations and Trends in Human–Computer Interaction, 4(2):81–173, 2011.

[Fo16] Apache Mahout: Scalable Machine Learning and Data Mining, The Apache Software
Foundation. https://mahout.apache.org/.

[Ga07] Gao, F.; Chunxiao, X.; Xiaoyong, D.; Shan, W.: Personalized Service System Based
on Hybrid Filtering for Digital Library. Tsinghua Science and Technology. Tsinghua
University Press (TUP), 12(1):1–8, 2007.

[Ga11] Gantner, Z.; Rendle, S.; Freudenthaler, C.; Schmidt-Thieme, L.: Mymedialite: A Free
Recommender System Library. In: Proceedings of 5th ACM Conference on Recommender
Systems, RecSys ’11. ACM, pp. 305–308, 2011.

[GS09] Gunawardana, A.; Shani, G.: A Survey of Accuracy Evaluation Metrics of Recommenda-
tion Tasks. Journal of Machine Learning Research, 10:2935–962, 2009.

[He04] Herlocker, J.; Konstan, J.; Terveen, L.; Riedl, J.: Evaluating Collaborative Filtering Recom-
mender Systems. ACM Transactions on Information Systems TOIS, 22(1):5–53, 2004.

[Ja11] Jannach, D.; Zanker, M.; Felfernig, A.; Friedrich, G.: Recommender Systems: An Intro-
duction. Cambridge University Press, New York, 2011.

[SB14] Said, A.; Bellogin, A.: Comparative Recommender System Evaluation: Benchmarking Rec-
ommendation Frameworks. In: Proceedings of The 8th ACM Conference on Recommender
Systems RecSys’14. ACM, pp. 129–136, 2014.

[SG11] Shani, G.; Gunawardana, A.: Evaluating Recommendation Systems. Recommender Sys-
tems Handbook. Springer, pp. 257–97, 2011.

[SW12] Seminario, C.; Wilson, D.: Case Study Evaluation of Mahout as a Recommender Plat-
form. In: Workshop on Recommendation Utility Evaluation: Beyond RMSE (RUE 2012),
Proceedings of the 6th ACM Conference on Recommender Engines (RecSys). ACM, pp.
45–50, 2012.

[XB07] Xiao, B.; Benbasat, I.: Ecommerce Product Recommendation Agents: Use, Characteristics,
and Impact. MIS Quarterly, 31(1):137–209, 2007.

[Zi05] Ziegler, C.; Sean, M.; Konstan, J.; Lausen, G.: Improving Recommendation Lists Through
Topic Diversification. In: Proceedings of The 14th International World Wide Web Confer-
ence WWW2005. ACM, pp. 22–32, 2005.

300 Araek Tashkandi, Lena Wiese, Marcus Baum


