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Abstract: Modern web applications often require application servers to deliver updates proactively
to the client. These push-based architectures, however, are notoriously hard to implement on top of
existing infrastructure, because today’s databases typically only support pull-based access to data.
In this paper, we first illustrate the usefulness of query change notifications and the complexity of
providing them. We then describe use cases and discuss state-of-the-art systems that do provide them,
before we finally propose a system architecture that offers query change notifications as an opt-in
feature for existing pull-based databases. As our proposed architecture distributes computational work
across a cluster of machines, we also compare scalable stream processing frameworks that could be
used to implement the proposed system design.
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1 Introduction

OLTP databases traditionally only support pull-based access to data, i.e. they return data as

a direct response to a client request. This paradigm is a good fit for domains where users

work on a common data set, but isolated from one another. A variety of modern (web)

applications like messengers or collaborative worksheets, on the other hand, target more

interactive settings and are expected to reflect concurrent activity of other users. Ideally,

clients would be able to subscribe to complex queries and receive both the initial result as

well as result updates (i.e. change notifications) as soon as they happen. But only few OLTP

database systems provide real-time capabilities beyond simple triggers and application

developers often have to employ workarounds to compensate for the lack of functionality.

For example, applications are often modeled in such a way that application servers can

filter out relevant changes by monitoring specific keys instead of actually maintaining query

results in real-time. This makes it possible to notify co-workers of recent changes in a shared

document or invalidating caches for static resources [GBR14], but more complex scenarios

that cannot be mapped to monitoring individual keys (e.g. maintaining user-defined search

queries) are simply infeasible.

In this paper, we survey currently available systems that do provide query change noti-

fications, discuss strengths and weaknesses of their respective designs and propose an

alternative system architecture that offers a unique set of strong points. The envisioned

system is built around a scalable stream processing framework and, compared to the current

state of the art, provides the following main benefits:

1 University of Hamburg, Information Systems, Vogt-Kölln-Straße 30, 22527 Hamburg, Germany:

wingerath@informatik.uni-hamburg.de, gessert@informatik.uni-hamburg.de, friedrich@informatik.uni-

hamburg.de, ritter@informatik.uni-hamburg.de
2 Baqend GmbH, Vogt-Kölln-Straße 30, Room F-528, 22527 Hamburg, Germany: ew@baqend.com

B. Mitschang et al. (Hrsg.): BTW 2017 – Workshopband,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 269

mailto:wingerath@informatik.uni-hamburg.de
mailto:gessert@informatik.uni-hamburg.de
mailto:friedrich@informatik.uni-hamburg.de
mailto:friedrich@informatik.uni-hamburg.de
mailto:ritter@informatik.uni-hamburg.de
mailto:ew@baqend.com


1. Opt-In Change Notifications: Being a standalone system, our proposed architecture

provides real-time change notifications as an additional feature to existing DBMSs.

2. Linear Scalability: The system is able to scale with the number of continuously

maintained queries as well as the update throughput.

3. Pluggable Query Engine: Through a pluggable query engine, the approach is not

system-specific, but applicable to a variety of different databases.

The rest of this article is structured as follows: In Section 2, we provide an example to

illustrate what exactly query change notifications are and why providing them is a non-trivial

task. We then explore the three use cases (1) real-time notifications for interactive (web)

applications, (2) query result cache invalidation and (3) materialized view maintenance in

Section 3 and survey existing systems that provide query change notifications in Section 4.

Subsequently, we present our own architecture for opt-in query change notifications and

discuss viable candidates for the underlying stream processing framework in Section 5. A

conclusion and final thoughts are given in Section 6.

2 Problem Statement

In order to enable clients to define their critical data set and keep it in-sync with the server,

we argue that clients should be provided with the initial result and updates to the result

alike. For an illustration of a possible set of notifications, consider Figure 1 that shows a

query for NoSQL-related blog posts and a blog post that enters and leaves the result set as

it is edited.

{ title: "NoSQL",

  year: -1 }

{ title: "NoSQL",

  year: 2016 }

{ title: "NoSQL",

  year: 2061 }

{ title: "SQL",

  year: 2016 }

{ title: null,

 year: -1 }

SELECT * FROM posts WHERE title LIKE "%NoSQL%" ORDER BY year DESC

add removechangeIndex change

Fig. 1: An example of notifications that occur while a blog post is edited.

Initially, the blog post is created without title and without year and therefore does not match

the query. When the author chooses the title to be “NoSQL”, the blog post enters the query

result (dashed box) and all query subscribers have to be notified of this event through an

add notification. Since the publication year is still set to the default value of -1, the blog

post currently has the last position in the result set. Next, the author intends to set the

publication year to the current year, 2016, but accidentally sets it to 2061. Irrespective of

this typo, the blog post moves from the last to the first position in the result set, because it

now has the largest year value; subscribers receive a changeIndex notification and are

thus aware of an update to the blog post that changed its position. The author becomes

aware of her mistake and subsequently corrects it by setting the year to 2016. Since there is

no other more recent article, the blog post does not change its position (no changeIndex

notification), but subscribers still receive a change notification. After a change of mind,

the author updates the title to “SQL” and the blog post correspondingly ceases to match the
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query predicate, provoking a remove notification. None of the following blog post updates

will lead to a notification as long as the matching condition is not satisfied.

Detecting query result changes is significantly more complex than detecting updates on

individual data items, because any written object (here: blog post) may or may not satisfy

the matching condition of any maintained query. Further, the previous matching status of

an object with respect to a query has to be known in order to be able to tell the difference

between add, change and changeIndex events and to recognize a remove event.

3 Use Cases

There are many applications that rely on server-side notifications of state updates. They can

be classified as follows:

1. Notifications for Clients: The obvious use case for change notification is forwarding

them to clients, so that they are informed whenever relevant state changes occur.

2. Cache Invalidations: The capability of detecting result changes opens up the possi-

bility of caching dynamic data, namely query results, with minimal staleness windows.

Whenever a result is updated (i.e. becomes stale), the corresponding caches can be

invalidated. Since queries are not only served by the database itself, but also by

caches located near the clients, response times are reduced significantly and read

workload is taken off the database.

3. Materialized Views: Frequently requested queries can be kept up-to-date in a sepa-

rate data store to further relieve the primary database. It is even possible to amend

the querying capabilities of the primary database to enable access patterns that would

otherwise not be available: for example, a materialized MongoDB view could be

maintained on top of a key-value store like Riak by loading all data in a bucket

initially and subsequently only processing incoming updates.

4 State of the Art

The inability of traditional pull-based database systems to cope with streaming data well

has been identified as a critical and mostly open challenge years ago [SC05, ScZ05] and

the integration of static and streaming data has been studied for decades [BLT86, BW01,

MWA+03]. While early prototypes required append-only databases [TGNO92], modern

systems also consider updated and removed data and thus target more practical applications.

Complex Event Processing (CEP) engines [ACc+03, AAB+05] are software systems

specifically designed to derive complex events like a sensor malfunction or an ongoing

fraud from low-level events such as individual sensor inputs or login attempts. Queries

do not only constrain data properties, but also temporal, local or even causal relationships

between events. In contrast to databases that permanently store and subsequently update

information, though, CEP engines work on ephemeral data streams and only retain derived

state such as aggregates in memory for a relatively short amount of time.

Timeseries databases [DF14] are specialized to store and query infinite sequences of

events as a function of the time at which they occurred, for example sensor data indexed

by time. While they store data permanently and some of them do also have continuous
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querying capabilities (e.g. InfluxDB3), they are typically employed for analytic queries,

materialized view maintenance or downsampling streams of information and do not extend

to change notifications.

In recent years, new database systems have emerged that aim to provide real-time change

notifications in a scalable manner, but they provide only vendor-specific solutions. Existing

applications working on a purely pull-based database have to either switch the underlying

data storage system to gain real-time change notifications or have to employ workarounds

to compensate for the lack of them.

Meteor4 is a web development platform backed by MongoDB that provides real-time

query change notifications using two different techniques. In principle, a Meteor server

reevaluates every continuous query periodically and compares the last and the current result

to detect recent changes. This “poll-and-diff” approach allows a complete coverage of the

MongoDB feature set, but also adds latency of several seconds. More importantly, it puts

load on the database and the application server for computing, serializing, sending and

deserializing query results that is proportional to their size. Whenever possible, Meteor

applies a more light-weight strategy called oplog tailing where a Meteor server subscribes

to the MongoDB oplog (the replication stream) and tries to extract relevant changes from

it. While oplog tailing greatly reduces notification latency and processing overhead, it still

requires querying MongoDB when the information provided by the oplog is incomplete.

The approach is further hard-limited by the maximum of replica set members allowed by

MongoDB [Inc16], is only feasible when overall update throughput is low and prohibits

horizontal scaling [Das16, met14]. Parse5 is a development framework with MongoDB-

like querying capabilities and change notifications for queries. The involved computation

can be distributed across several machines, but is ultimately limited by a single-node Redis

instance employed for messaging [Par16b]. Parse’s hosted database service is going to

shutdown in January 2017 and the number of people contributing to the code base has

been decreasing over the last months [Par16a]. Even though other vendors have announced

support of the Parse SDK [Gai16], future support for the Parse platform is uncertain.

Oracle 11g is a distributed SQL database with complex query change notifications that

supports streaming joins with certain restrictions [WBL+07]. Materialized views of the

continuous queries are maintained by applying committed change operations periodically,

on-demand or on transaction commit [M+08]. Due to the strict consistency requirements

and the underlying shared-disk architecture, scalability is limited. PipelineDB6 extends

PostgreSQL by change notifications for complex queries. While the open-sourced version

can only run on a single node, the enterprise version supports a clustering mode that shards

continuous views and associated computation across several machines. However, since

all write operations (insert, update, delete) are coordinated synchronously via two-phase

commit between all nodes [Pip15], PipelineDB Enterprise is only scalable up to moderate

cluster sizes. RethinkDB7 is a NoSQL database that does support rich continuous query

semantics, but is currently subject to a hard scalability limit [Ret16] and does not provide

3 https://www.influxdata.com/time-series-platform/influxdb/
4 https://www.meteor.com/
5 https://parse.com/
6 https://www.pipelinedb.com/
7 https://www.rethinkdb.com/
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streaming joins. It is the underlying data store for the Horizon8 development framework.

Firebase9 is a cloud database that delivers notifications for changed data, but provides only

limited query expressiveness due to the very restrictive underlying data model that requires

information to be organized in a tree of lists and objects.

5 Vision: Scalable Opt-In Query Change Notifications

To enable query change notifications on top of systems that by themselves do not provide

them, we propose amending these systems by an additional real-time subsystem.

application servers

event broker

stream processor

re
a
l-

ti
m

e
O

L
T

P

Fig. 2: An architecture that provides opt-

in query change notifications on top of

purely pull-based databases.

In our proposed architecture as illustrated in Figure

2, common OLTP workloads are still handled by ap-

plication servers that interact with the database on

behalf of clients. To cope with additional real-time

workload, we introduce a new subsystem compris-

ing an event broker (i.e. a streaming system like

Kafka) to buffer data between application servers

and a scalable stream processor (e.g. Storm) that

maintains continuous queries and generates notifica-

tions whenever results change.

To make continuous query maintenance stand on

its own, the application server has to provide the

real-time subsystem with all required information,

namely initial query results and complete data ob-

jects on every write. To this end, each continuous

query is evaluated once upfront and then sent to the

event broker along with all matching objects. Every

write operation, i.e. each insert, update and delete,

is sent to the event broker together with a complete

after-image of the written object, i.e. with the com-

plete data object after the operation has been exe-

cuted. Besides, an application server subscribes to

notifications for the continuous queries of its clients

and forwards them correspondingly.

The task of matching the stream of incoming op-

erations against all continuous queries is executed

in distributed fashion and partitioned both by writ-

ten objects and maintained queries. Thus, each pro-

cessing node is only responsible for a subset of all

queries and a subset of all operations. Changes are

detected based on whether an object used to be a

match and whether it still is a match for a query. For

every change, a notification is sent upstream.

8 https://horizon.io/
9 https://firebase.google.com/
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The proposed system design decouples resource requirements as well as failure domains for

primary storage (persistent data, pull-based access) on the one hand and real-time features

(change notifications, push-based access) on the other. Since the real-time workload is

handled in a separate subsystem, resources for continuously maintaining query results

can be scaled out, while persistent data may be kept in a strongly consistent single-node

system. Using a shared-nothing architecture and asynchronous communication throughout

the critical processing path, we avoid bottlenecks and thus achieve linear scalability and

low latency.

5.1 Scalable Stream Processing Frameworks

Over the last years, a number of scalable and fault-tolerant stream processors have emerged.

In the following, we briefly discuss systems that appear as viable candidates for implement-

ing the sketched system design. We therefore do not go into detail on systems that are prone

to data loss (e.g. S4 [NRK10]), have been abandoned (e.g. Muppet10 [LLP+12] or Naiad11

[MMI+13]), are not publicly available (e.g. Google’s Photon [ABD+13] and MillWheel

[ABB+13], Facebook’s Puma and Stylus [CWI+16] or Microsoft’s Sonora [YQC+12])

or cannot be deployed on-premise (e.g. Google’s Dataflow cloud service12 which is built

on the eponymous programming model [ABC+15]). For a more detailed overview over

the stream processing landscape and a discussion of the trade-offs made in the individual

systems’ designs, see our stream processing survey [WGFR16].

One of the oldest stream processors used today is Storm13 [TTS+14]. It exposes a very

low-level programming interface for processing individual events in a directed acyclic graph,

the topology, with at-least-once processing guarantees and is generally geared towards low

latency more than anything else. It also provides a more abstract API, Trident, that comes

with additional functionality (e.g. aggregations) and guarantees (e.g. exactly-once state

management), but also displays higher end-to-end processing latency than plain Storm,

because it buffers events and processes them in micro-batches. Being built on the native

batch processor Spark14 [ZCD+12], Spark Streaming15 [ZDL+13] also works on small

batches, but usually displays even higher latency on the order of seconds. Through its

integration with Spark, Spark Streaming probably has the widest user and developer base

and is part of a very diverse ecosystem. Samza16 [Ram15] and Kafka Streams [Kre16] are

stream processors that are tightly integrated with the data streaming system Kafka [KNR11]

for data ingestion and output. Data flow is based on individual events, but since neither

Samza nor Kafka Streams have a concept of complex topologies, data has to be persisted

between processing steps and latency thus adds up quickly. Flink17 (formerly known as

Stratosphere [ABE+14]) tries to combine the speed of a native stream processor with a rich

10 https://github.com/walmartlabs/mupd8
11 https://github.com/MicrosoftResearch/Naiad
12 https://cloud.google.com/dataflow/
13 http://storm.apache.org/
14 https://spark.apache.org/
15 https://spark.apache.org/streaming/
16 https://samza.apache.org/
17 https://flink.apache.org/
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feature set comparable to that of Spark/Spark Streaming, but is not as widely adopted, yet

(cf. [Fou16b, Fou16a]). Even though Flink allows to configure buffering time of individual

events, it cannot be tuned as aggressively towards latency as Storm (see for example

[CDE+15] or [Met16, slide 71]). Apex18 is another native stream processor with similar

design goals as Flink. Being relatively new on the market, Apex is still getting traction.

Heron19 [KBF+15] was developed by Twitter to replace Storm which had proven inefficient

in multi-tenant deployments, among other reasons due to poor resource isolation. It was

open-sourced recently, but has not found wide-spread use as of writing. IBM Infosphere

Streams [HAG+13, BBF+10] is a proprietary stream processor that is bundled with its own

IDE and programming language. It reportedly achieves very low latency, but performance

evaluations made by IBM [Cor14] indicate it only performs well in small deployments

with up to a few nodes. Concord20 is a proprietary stream processing framework designed

around performance predictability and ease-of-use that has just very recently been released.

To remove garbage collection as a source of possible delay, it is implemented in C++.

To facilitate isolation in multi-tenant deployments, Concord is tightly integrated with the

resource negotiator Mesos21 [HKZ+11].

6 Conclusion

The ability to notify clients of data changes as they happen has become an important feature

for both data storage systems and application development frameworks. However, since

established OLTP databases have been designed to work with static data sets, they typically

do not feature real-time change notifications. The few systems that do are limited in their

expressiveness, difficult to scale or they enforce a strong coupling between processing static

and streaming data.

In this paper, we propose a scalable system architecture for providing change notifications

on top of pull-based databases that sets itself apart from existing designs through a shared-

nothing architecture for linear scalability, coordination-free processing on the critical

path for low latency, a pluggable query engine to achieve database-independence and a

separation of concerns between the primary storage system and the system for real-time

features, effectively decoupling failure domains and enabling independent scaling for both.

We are not aware of any other system or system design that makes complex query change

notifications available as an opt-in feature.

While this paper only introduces the conceptual design and contrasts it to existing technol-

ogy, we already have implemented a prototype that supports the MongoDB query language.

So far, our prototype has been used in combination with MongoDB as primary storage

system for two use cases: first, providing real-time change notifications for users of a web

app and, second, invalidating cached query results as soon as they become stale. We will

provide details on the implementation and performance of our prototype in future work.

18 https://apex.apache.org/
19 https://twitter.github.io/heron/
20 http://concord.io/
21 http://mesos.apache.org/
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[ScZ05] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. The 8 Requirements of
Real-time Stream Processing. SIGMOD Rec., 34(4):42–47, December 2005.

[TGNO92] Douglas Terry, David Goldberg, David Nichols, and Brian Oki. Continuous Queries
over Append-only Databases. SIGMOD Rec., 21(2):321–330, June 1992.

[TTS+14] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M. Patel,
Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, Nikunj
Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. Storm@Twitter. In Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data, SIGMOD ’14,
pages 147–156, New York, NY, USA, 2014. ACM.

[WBL+07] Andrew Witkowski, Srikanth Bellamkonda, Hua-Gang Li, Vince Liang, Lei Sheng,
Wayne Smith, Sankar Subramanian, James Terry, and Tsae-Feng Yu. Continuous
Queries in Oracle. In Proceedings of the 33rd International Conference on Very Large
Data Bases, VLDB ’07, pages 1173–1184. VLDB Endowment, 2007.

[WGFR16] Wolfram Wingerath, Felix Gessert, Steffen Friedrich, and Norbert Ritter.
Real-time stream processing for Big Data. it - Information Technology,
58(4):186–194, June 2016. http://www.degruyter.com/view/j/itit.2016.58.issue-4/issue-
files/itit.2016.58.issue-4.xml.

[YQC+12] Fan Yang, Zhengping Qian, Xiuwei Chen, Ivan Beschastnikh, Li Zhuang, Lidong Zhou,
and Guobin Shen. Sonora: A Platform for Continuous Mobile-Cloud Computing.
Technical Report MSR-TR-2012-34, Microsoft Research, March 2012.

[ZCD+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, et al. Resilient Distributed
Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing. In Proceed-
ings of the 9th USENIX Conference on Networked Systems Design and Implementation,
NSDI’12, pages 2–2, Berkeley, CA, USA, 2012. USENIX Association.

[ZDL+13] Matei Zaharia, Tathagata Das, Haoyuan Li, et al. Discretized Streams: Fault-tolerant
Streaming Computation at Scale. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, pages 423–438, New York, NY, USA,
2013. ACM.

278 Wolfram Wingerath, Felix Gessert, Steffen Friedrich, Erik Witt, Norbert Ritter


