

Preserving Recomputability of Results from Big Data Transformation Workflows

Matthias Kricke (Leipzig University) Martin Grimmer (Leipzig University) Michael Schmeißer (mgm) München/HQ Bamberg Berlin Đà Nẵng Dresden Grenoble Hamburg Cologne Leipzig Nuremberg Prague Washington Zug

Information is constantly acquired

Information from external sources is used to create value

ப mgm

Market Research Use Case

- Storage and processing of highly diverse event data from external sources
- Fully automated production line despite heterogeneous data quality
- Asynchronous integration of manual process steps

Requirements for Recomputability

- Possibility to recompute delivered products at any time from the raw data, for instance to deliver them again or adapt them selectively based on customer demands
- The originally computed result needs to be annotated with all information required to reproduce it
- The recomputation should be able to take place fully automatic

Real Time

Customers expect stability of delivered data products

Turnover in € 02/17	Germany	United Kingdom	France	Total
TVs	523,239	499,021	607,201	1,629,461
Smartphones	1,239,402	1,340,023	1,234,481	3,813,906
Tablets	829,012	1,022,339	1,032,211	2,883,562
Total	2,591,653	2,861,383	2,873,893	8,326,929

Turnover in € 02/17	Germany	United Kingdom	France	Total
TVs	523,239	499,021	607,201	1,629,461
Smartphones	1,239,402	1,340,023	1,234,481	3,813,906
Tablets	829,012	1,022,339	1,032,211	2,883,562
Convertibles	11,428	9,210	17,329	37,967
Total	2,603,081	2,870,593	2,891,222	8,364,896

Customers expect stability of delivered data products

Turnover in € 02/17	Germany	United Kingdom	France	Total
TVs	523,239	499,021	607,201	1,629,461
Smartphones	1,239,402	1,340,023	1,234,481	3,813,906
Tablets	829,012	1,022,339	1,032,211	2,883,562
Total	2,591,653	2,861,383	2,873,893	8,326,929

Turnover in € 02/17	Germany	United Kingdom	France	Total
TVs	523,239	499,023	607,201	1,629,463
Smartphones	1,239,402	1,340,026	1,234,481	3,813,909
Tablets	959,012	1,012,341	1,022,211	2,993,564
Convertibles	21,428	19,211	27,329	67,968
Total	2,743,081	2,870,601	2,891,222	8,504,904

External systems may not offer everything that is needed by our data transformation process

Full History Low Latency High Throughput

Availability

Time-toconsistency bound

External systems are used via an External Sytem Adaptor

A time-to-consistency bound is required for recomputability

- Time-to-consistency t_{con} is the maximum duration that it may take for a write operation to become and stay visible for all reading processes, starting with the ingest timestamp of the write operation
- Write operations use the current time for the ingest timestamp
- Read operations use at most the current time minus the time-to-consistency as the requested ingested timestamp

- Normally, the time-to-consistency needs to be lower than the transaction timeout for relational databases
- For CP-type distributed databases (HBase, Accumulo), the write timeout can be used, because successful writes are immediately visible to all readers
- If a write operation fails, the retry should use a new timestamp if possible, because then time-to-consistency restarts

 $t_{con} > 0$

Using the modification timestamps of the external systems can endanger recomputability

Bitemporal versioning is required for recomputable results

The ELSA Data Synchronization keeps the data up to date

- A Change Listener in the ELSA Data Synchronization service subscribes to changes in each external system
- Once an external change arrives, it is transformed to an insert or delete and stored in the change queue for the external system
- An asynchronous Store Updater transforms the changes from the queue to ELSA Store records
- Depending on the Store technology used, the Store Updater also takes care that the updated store files become available to all nodes

The ELSA Store provides a queryable history of the external systems' state

Record <i>r</i>	Row Key <i>k</i>	Column Family External Store	Column Qualifier t _e	Version t _i	Value Operation & <i>v</i>
r_1	x	ext_1	5	10	insert & v_1
r_2	x	ext_1	10	30	delete
r_3	x	ext_1	12	20	insert & v_2
r_4	x	ext_1	35	40	insert & v_3
$q_1 = (x, 15)$	5,35)		$q_2 = (x, 11, 40)$		$q_3 = (x, 15, 15)$
$r_1 \rightarrow selec$	t		$r_1 \rightarrow select$		$r_1 \rightarrow select$
$r_2 \rightarrow selec$	t		$r_2 \rightarrow select$		$r_2 \rightarrow skip$
$r_3 \rightarrow selec$	t		$r_3 \rightarrow terminate$		$r_3 \rightarrow skip$
$r_4 \rightarrow term$	inate		$result = r_2$		$r_4 \rightarrow terminate$
result = r	3				$result = r_1$

Other Factors which influence produced results

Configuration

- Configuration changes may have an impacted in the produced results, e.g. which correction steps are automatically applied
- Solution: Annotate the computed results with the configuration values used to produce them
- Alternative: Configuration as data stored in its own versioned store

Version of the software

- Solution: Annotate the computed results with the software version used
- Pitfall: Old versions may no longer be available to reproduce results! In this case, you could pull up a new cluster with the old version.

Machine learning models

- Might provide different answers to the same questions, e.g. if they have been retrained or reconfigured
- Solution: Version them as if they were regular data or configuration

Probabilistic transformations

- Using RNGs
- Hash-based partitioning
- Different amount of partitions
- Rounding errors
- Solution: Don't do it

Summary

- External systems often don't offer what is needed for a distributed data transformation process that shall produce recomputable results
- For system landscapes which need recomputability and scalability, ELSA offers an architecture for integrating external systems
- CP-type columnar databases are good candidates as ELSA store technologies because of their scalability, consistency guarantees and lookup performance
- However, the additional system complexity of the ELSA store and synchronization process may sometimes not be worth the benefits
- Right now, ELSA is limited to key value lookups

Matthias Kricke kricke@informatik.uni-leipzig.de Leipzig University

Martin Grimmer grimmer@informatik.uni-leipzig.de Leipzig University

Michael Schmeißer michael.schmeisser@mgm-tp.com mgm technology partners GmbH

Sources

- <u>https://www.iconfinder.com/icons/134164/cash_currency_exchange_money_icon#size=</u> 256
- https://www.iconfinder.com/icons/383986/basket_buy_cart_order_sale_shop_shopping _icon#size=374
- <u>https://www.iconfinder.com/icons/63467/database_storage_icon#size=128</u>
- https://www.iconfinder.com/icons/763237/bubble_comment_communication_conversati on_message_other_review_talk_icon#size=128
- <u>https://www.iconfinder.com/icons/18282/browser_earth_global_globe_international_int</u> <u>ernet_network_planet_world_icon#size=256</u>
- <u>https://www.iconfinder.com/icons/1886958/diagram_hierarchical_hierarchy_order_orga</u> <u>nization_structure_team_icon#size=256</u>
- <u>https://www.iconfinder.com/icons/667368/celcius_clouds_farenheit_sunshine_temeratu</u> re_thermometer_weather_icon#size=256

Innovation Implemented.

Michael Schmeißer **mgm technology partners GmbH** Frankfurter Ring 105a 80807 Munich Tel.: +49 (0) 89 / 35 86 80-0 Fax: +49 (0) 89 / 35 86 80-288 <u>http://www.mgm-tp.com</u> Michael.Schmeisser@mgm-tp.com