Towards Complex User Feedback and Presentation Context in Recommender Systems

Peter Vojtas and Ladislav Peška

Department of Software Engineering, Charles University in Prague, Czech Republic
User Implicit Feedback

Results

Dwell time: 16.8 sec
Mouse moving time: 1.8 sec
Travelled distance: 2009px
User Feedback – Past Research

- Combine multiple implicit feedback features to estimate user rating
- Standard CB / CF recommender systems can be used afterwards

- Improvements over the usage of simple implicit feedback

Peska, Vojtas: How to Interpret Implicit User Feedback?
Peska, Eckhardt, Vojtas: Preferential Interpretation of Fuzzy Sets in E-shop Recommendation with Real Data Experiments
Overview

- Context of user feedback – our approach
- Collecting User Behavior
- Estimated Rating from Implicit Feedback
- Employ Context in Rating Estimation
- Evaluation
- Results
- Conclusions, Future Work
Context of User Feedback

- Context of the user
 - Location, Mood, Seasonality...
 - *Can affect user preference*
 - *Out of scope of this paper*

- Context of device and page
 - Page and browser dimensions
 - Page complexity (amount of text, links, images,...)
 - Device type
 - Datetime
 - *Can affect perceived values of the user feedback*
Outline of Our Approach

Traditional recommender

- User rates a sample of objects
 \[r_{u,o} : o \in S \subset O; \quad r_{u,o} \in [0,1] \]
- Preference learning computes expected ratings of all objects
 \[R_u \rightarrow \hat{r}_{u,o} : o' \in O \]
- Top-k best rated objects are recommended
 \[\hat{R}_u = \{o_1, \ldots, o_k\} \]

Our approach

- Several implicit feedback and contextual features are collected:
 \[F_{u,o} = [f_1, \ldots, f_i] \quad C_{u,o} = [c_1, \ldots, c_j] \]
- Learn estimated rating \(\tilde{r}_{u,o} \) for visited objects based on feedback and context
 \[F_{u,o}, C_{u,o} \rightarrow \tilde{r}_{u,o} : o \in S \]
 \[„The more the better“ heuristics (STD, CDF) \]
 \[Machine learning approach (J48) \]
- Incorporate context
 \[As further feedback features (FB+C) \]
 \[As baseline predictors (AVGBP, CBP) \]
- Learn rating on all objects as in traditional recommenders
 \[\tilde{R}_u \rightarrow \hat{r}_{u,o} : o' \in O \]
Collecting User Behavior

- IPIget component for collecting user behavior

<table>
<thead>
<tr>
<th>Implicit Feedback Features</th>
<th>Contextual features</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1 View Count</td>
<td>c_1 Number of links</td>
</tr>
<tr>
<td>f_2 Dwell Time</td>
<td>c_2 Number of images</td>
</tr>
<tr>
<td>$f_{3,4}$ Mouse Distance and Time</td>
<td>c_3 Text size</td>
</tr>
<tr>
<td>$f_{5,6}$ Scrolled Distance and Time</td>
<td>c_4 Page dimensions</td>
</tr>
<tr>
<td>f_7 Clicks count</td>
<td>c_5 Visible area ratio</td>
</tr>
<tr>
<td>f_8 Hit bottom of the page</td>
<td>c_6 Hand-held device</td>
</tr>
<tr>
<td>r Purchase</td>
<td></td>
</tr>
</tbody>
</table>

IPIget component download: http://ksi.mff.cuni.cz/~peska/ipiget.zip
Estimated Rating from Implicit Feedback

- „The more the better” heuristics
 - Various feedback features are not comparable in general
 - Dwell time (sec) vs. Distance travelled by mouse (pixels)
 - Transform feedback features on comparable scale and average
 - Use standardization (STD) of feedback features

- Use cumulative distribution (CDF) of each feedback feature

\[\mu = 0 \quad \sigma = 1 \]
Estimated Rating from Implicit Feedback

- Machine learning approach
 - J48 decision tree
 - *Purchases* are golden standard
 - The only feedback which is a true indicator of positive preference
 - Predict *purchases* based on other feedback features
 - Use probability of purchase as estimated rating $\tilde{r}_{u,o}$
Employ Context in Rating Estimation

- Use context in the same way as feedback \((FB+C)\)
 - Leave the decision about usage of context on the underlined model
 - Plausible strategy for e.g. decision trees or rule mining learning approaches

- Use context as a baseline predictor of feedback
 - Calculate estimated value of feedback feature for particular context value \(\bar{f}_i(c_j)\)
 - Subtract the estimation from the actual value \(f_{i,u,o}^{bp} = f_{i,u,o} - \bar{f}_i(c_j)\)
 - Use feedback with baseline estimators instead of the original one
 - Either employ average baseline predictor over all context features (AVGBP)
 - Or use Cartesian product of feedback features and baseline predictors based on each context feature (CBP)
Preference Learning and Recommendations

- Collaborative filtering not applicable
 - Continuous cold-start problem

- Use combination of content-based and non-personalized
 - VSM (vector space model) content-based recommendation
 - Vector of object features (TF-IDF)
 - User is represented as weighted sum of visited object’s features
 - Resulting score is a cosine similarity of user and object vectors
 - Most popular non-personalized algorithm
 - Based on estimated ratings $\tilde{r}_{u,o}$

- Final score $\hat{r}_{u,o}$ is a multiplication of VSM score and most popular score
Evaluation

- Czech travel agency dataset
 - 3 variants of rating estimation (STD, CDF, J48)
 - 3 variants of context incorporation (FB+C, AVGBP, CBP)
 - 2 baselines (use raw feedback, use binary visits)

- Leave-one-out on purchased objects
 - Ranking prediction
 - nDCG, recall@top-10
Results

<table>
<thead>
<tr>
<th>Processing method</th>
<th>Feedback and Context composition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Binary</td>
</tr>
<tr>
<td>STD + popVSM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.255*</td>
</tr>
<tr>
<td>CDF + popVSM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.255*</td>
</tr>
<tr>
<td>J48 + popVSM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.255*</td>
</tr>
<tr>
<td>J48 + objects popularity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.180**</td>
</tr>
<tr>
<td>J48 + VSM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.222*</td>
</tr>
</tbody>
</table>

- Results of nDCG, (*) = significant improvement of the best method
- J48 decision tree with both feedback and context on its input performs the best
- Using „the more the better“ heuristics (CDF) with properly processed feedback (AVGBP, CBP) also performs quite well
Conclusions, Future Work

Key outcomes
- Implicit feedback could be more than just a binary variable
- Observed feedback should be considered with respect to the context of page and device
 - Doing so could improve the quality of the recommended objects

Future work, Open Problems
- Better models of context employment and purchase prediction methods
- Further evaluation scenarios
 - Recommending on the beginning of a new session
- More refined feedback?
 - E.g. feedback on object’s attributes?
- On-line deployment and evaluation
Thank you!

Questions, comments?

Supplementary materials: http://bit.ly/2g79VVO