Computational Social Choice in the Cloud

Theresa Csar, Martin Lackner, Emanuel Sallinger, Reinhard Pichler

Technische Universität Wien Oxford University

PPI, Stuttgart, March 2017

By Sam Johnston [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

Cloud Computing Technologies

MapReduce

Map Phase

The input data is mapped to (key,value)-pairs

Shuffle Phase The (key,value)-pairs are assigned to the reduce tasks

Reduce Phase

Each reduce task performs a simple calculation on all its values

What's an election?

Given as lists of preferences with n votes and m candidates.

We are interested in finding the best candidate, or the set of best candidates.

MapReduce and Elections by Example

Given a set of m = 3 candidates a,b,c and n voters. Each voter provides a ranking of candidates, e.g.: a > b > c

Borda Scoring Rule: The candidate ranked first receives m–1 points, the second m–2 points, etc.

MapReduce and Elections by Example – Borda Scoring Rule

Performance Analysis of a Mapreduce Computation

- data replication rate (rr)
- number of MapReduce rounds
- number of keys / reduce tasks
- wall clock time (wct): the maximum time consumed by a single computation path in the parallel execution of the algorithm
- total communication cost (tcc): number of values transferred during the computation.

Performance – Borda Scoring Rule

The scores of all candidates given a scoring rule can be computed using MapReduce with the following characteristics: rr = 1, # rounds= 1, # keys = m, wct \leq n, and tcc \leq mn.

Winner Determination in Elections

- Scoring Rules: Borda Scoring Rule, ...
- Copeland Set: The Copeland set is based on Copeland scores. The Copeland score of candidate a is defined as |{b ∈ C : a > b}|-|{b ∈ C : b < a}|. The Copeland set is the set of candidates that have the maximum Copeland score.
- The Smith set is the (unique) smallest set of candidates that dominate all outside candidates.
- The **Schwartz set** is the union of minimal sets that are not dominated by outside candidates.

Winner Determination in Elections Input Data

Preference-Lists (Scoring Rules)

- Number of Lists / Number of Votes
- Length of Votes / Number of Candidates

Dominance Graph (Smith Set, Copeland Set, Schwartz Set)

• Number of Candidates

Smith Set

Definition Candidate a is in the Smith set if and only if for every candidate b there is a path from a to b in the weak dominance graph.

Brandt, Fischer and Harrenstein (2009) show that in the weak dominance graph a vertex t is not reachable from a vertex s if and only if there exists a vertex v such that D2(v) = D3(v), $s \in D2(v)$, and $t / \in D2(v)$.

 \rightarrow In other words: We only need paths of length 3 to find the Smith Set

Smith Set Algorithm-sketch

- Preprocessing step (create needed datastructure)
- 2 MR-Rounds: to find paths of length 2 und 3 (or 4)
- Postprocessing: find vertices contained in the Smith set

Smith Set – Vertex Datastructure "Think like a vertex"

Each vertex saves three sets storing information on incoming and outgoing edges for a vertex a as follows:

- the set old stores all vertices that have been found previously to be reachable from a;
- the set new stores all vertices that have been found in the last mapreduce round to be reachable from a;
- the set **reachedBy** stores all vertices known to reach a;

Vertex Data Structure – in action

MapVertex		ReduceVertex A	
Input	Output	Input	Output
Vertex A new = {B} old = {} rB = {}	(A,({B},"old"))	(A,({B},"old")) (A,({C},"new"))	Vertex A new = $\{C\}$ old = $\{B\}$ rB = $\{\}$
Vertex B new = {C} old = {} rB = {A} Vertex C 	(B,({C},"old")) (B,({A},"rB")) (C,({A},"rB")) (A,({C},"new") 	Reduce Input (B,({C},"old")) (B,({A},"rB")) (B,({D},"new"))	Vertex B Output Vertex B $new = \{D\}$ $old = \{C\}$ $rB = \{A\}$

Experimental Design

- Mapreduce Java Implementation github.com/theresacsar/bigvoting
- Amazon Web Services (AWS) Elastic Compute Cloud
- Synthetic Datasets
 - with varying number of candidates and edges in the dominance graph (m=7000 candidates and m2/10 edges)
 - up to 128 EC2 instances

Future Work – Exploring other Technologies

- Pregel (Giraph, GraphX) "Think like a vertex"
 - Pregel-like systems are better suited for iterative Graph computations
- Spark
 - Interactivity
 - Data is loaded in memory

Future Work

- Other Technologies
- Using real word data
 - Results from search engines
- Other Rules for Winner Determination

Thank you for listening!

ask questions now or send me an email csar@dbai.tuwien.ac.at ©