
Post-Debugging in Large Scale Big Data Analytic Systems

Eduard Bergen1 Stefan Edlich2

Abstract: Data scientists often need to fine tune and resubmit their jobs when processing a large
quantity of data in big clusters because of a failed behavior of currently executed jobs. Consequently,
data scientists also need to filter, combine, and correlate large data sets. Hence, debugging a job
locally helps data scientists to figure out the root cause and increases efficiency while simplifying the
working process. Discovering the root cause of failures in distributed systems involve a different kind
of information such as the operating system type, executed system applications, the execution state,
and environment variables. In general, log files contain this type of information in a cryptic and large
structure. Data scientists need to analyze all related log files to get more insights about the failure
and this is cumbersome and slow. Another possibility is to use our reference architecture. We extract
remote data and replay the extraction on the developer’s local debugging environment.

Keywords: Software debugging, Bug detection, localization and diagnosis, Java Virtual Machine,

JVMTI, Bytecode instrumentation, Apache Flink, Application-level failures

1 Motivation

Fast and responsive data processing in the era of Big Data separated by the four dimensions,

volume, variety, velocity and veracity lead to a high complexity of data management.

Complex data management systems offer interfaces to get information about the current

system state, but there is a gap of subset observation in an executed large scale big data

analytic system (LSA).

When starting an investigation process to find the root cause of a failure, data scientists not

only need to investigate a big amount of diverse log-data. Data scientists also need detailed

knowledge about the executed processing engine such as Apache Flink to find out where to

start the search.

In our application, we are interested in the identification of failure patterns in the data that

user defined functions (UDFs) process. Within the identified failure pattern we observed,

the subset of the execution graph is of interest. The observation methodology allows doing

an extraction of the required information and application values to do a replay. We assume

most failure patterns at the runtime layer in the analysis process. Failures, which bring the

whole system down such as kernel crashes from the operating system, are not in the scope

of this work. Since a kernel crash is not safe and a crashed application cannot detect its own

crash without additional and complex tooling.

1 Department of Computer Science and Media, Beuth University of Applied Science Berlin, Germany, Luxem-

burger Str. 10, 13353 Berlin, eduard.bergen@beuth-hochschule.de
2 Department of Computer Science and Media, Beuth University of Applied Science Berlin, Germany, Luxem-

burger Str. 10, 13353 Berlin, stefan.edlich@beuth-hochschule.de

B. Mitschang et al. (Hrsg.): BTW 2017 – Workshopband,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 65

Currently, the system works as a prototype in a holistic system. The observation, extraction,

and replay need multiple steps. In this paper, we pursue the observation of a subset in an LSA

such as Apache Flink and emphasize obliviate techniques for a full automated observation

process. Although we integrated our prototype in Apache Flink, not all components are

optimal and efficient. Hence, response time and performance are not in the focus of this

work. The result of our work is a system that replays certain input records on the developer’s

local machine. This allows a much faster investigation of the big data analytic job and

brings us a step forward to find possible execution errors i.e. exceptions in minimal time.

This paper has following structure. First, we briefly present some background regarding

observation in Section 2, classify the runtime environment and failure types, address related

technologies, and describe their deficiencies. Section 3 is the main part and introduces our

approach by filling the gap through isolated local debugging. Within Section 4 we look into

our reference architecture, analyze behavior and show a use case. Finally, we conclude our

work.

2 Background and Related Work

In recent years more and more LSAs such as Apache Flink [AF16] and Apache Spark

[AS16] address fast parallel data processing using distributed system concepts. In distributed

systems capabilities to digest and interpret the root cause of an error fail because they are

too complex and large to handle failure analysis in production. Additionally, complex error

investigation techniques like traces suffer from getting in touch with the faulty environment.

Common approaches to discover a failure is through monitoring, remote debugging, data

provenance [CAA11] or tracing the lineage [CWW00]. LSAs with limited control over the

execution of a process and manipulation of data make it difficult to discover runtime errors.

Runtime errors result from code that is syntactically correct but violates the semantics of a

programming language.

public class SubText {

public static void main(String [] args) {

String printText = "SubText ";

System.out.println(printText.substring (7 ,4));

}

}

List. 1: Source code sample printText with exceptional part inside the substring method

Typically, LSAs are complex unit interaction environments where messages need to ex-

change between the units correct, deterministic and fault-tolerant. Inside units, the envi-

ronmental messages interact through interfaces. The model of an implemented interface

contains consistent entities. Every message interacts with a fixed protocol and connected

ports also known as channels. Independent failures do occur in units or channels. The

challenge is to detect these failures. At the application level, a failure category consists of

applicational failure models (AFM) and functional failure models (FFM).

66 Eduard Bergen, Stefan Edlich

Listing 1 represents a Java source code sample and shows a common scenario for a usual

runtime error. For simplicity reasons, we choose this example. In the fourth line of Listing 1

the value of variable printText will produce a Java exception of type StringIndexOutOf-

BoundsException because the value length of variable printText is seven and not eleven.

The method substring tries to access a range of chars between char seven and eleven. The

result is an abnormal program execution.

A program break inside LSAs is more than a classical abnormal program execution. Mostly

it is time-consuming to finish a broken job if a program breaks in a big cluster setup,

because of added additional communication overhead to a job. The common scenario is to

identify parts of the cluster as vulnerable manually or semi-automated and wait until these

parts restarted to a clean state. Other strategies are defining a model for the provenance of a

data item or querying [Vi10].

After introducing some preliminaries, we will briefly recall known methodologies in

debugging of distributed systems, specialized on record and replay (RnR). While there

are many different RnR systems, proposes because of varied applications such as program

debugging, online program analysis, fault tolerance, performance prediction and intrusion

analysis probably the most important application is program debugging. The most common

operation of debugging is bug reproduction, diagnosis and fixing. Program debugging

consists of several imperative steps such as executing the job multiple times, pausing and

investigating the state of variables and tracing [HT14].

It is also challenging to debug distributed software which often has complex structures

[Wi12]. The reproduction of identical executed jobs requires the same runtime. LSAs like

Apache Flink and Apache Spark have multiple signal controls, flows, application state,

intermediate results and shared resources. For reproduction purpose the replication of an

erroneous behavior of the used LSA [Fe15] becomes very hard because of first a different

ordering of data tuples, second the execution resources and third the runtime environment.

There are plenty of tools for debugging distributed systems such as Inspector gadget [OR11]

and Arthur [An13], Spark-BDD [Co15], Daphne [JYB11], and NEWT [LDY13]. These

tools are specific and run inside the same process as the application itself. Normally the

application uses the maximum level of the Java Virtual Machine (JVM) heap. Thus, it is

not possible to attach remote debuggers. Furthermore the debugger is using an expensive

heap space during the runtime, which often conflicts with the application heap space.

The more critical issue is the garbage collector itself. If the debugger runs in the same

JVM and owing to the fact that a garbage collector is working during a Java program

termination, in that case the debugger will also terminate. No further control is possible as

to introduce a new active polling process. This leads to a bad design where further issues

occur as a high CPU usage. Apart from internal observation, an external observation as

descriptive debugging information used in DTrace [CSL04] needs detailed knowledge about

the application runtime.

DiSL [Ma13] introduces the investigation process on the external and internal level. Basi-

cally DiSL uses a Java Virtual Machine Tool Interface (JVMTI) [OC16] implementation

Post-Debugging in Large Scale Big Data Analytic Systems 67

of bytecode instrumentation. Furthermore the DiSL Java framework does bytecode trans-

formation. In DiSL each compilation step sends and receives bytecode data between the

native agent and the DiSL framework through a Transmission Control Protocol (TCP)

socket connection. DiSL uses the combination of internal and external observation and

decouples the bytecode transformation to a separate process. The communication is mainly

socket based. If the compiler does not return the correct bytecode, the instrumentation of

bytecode is a bottleneck. In general the result of the integrated faulty bytecode leads to an

unpredictable JVM process termination.

If there is a need to get the fastest instrumentation of code transformation, implemented

prototypes should be able to manage and solve any locking techniques during the instru-

mentation phase. Thus, the post debugging approach needs to process deterministic in the

external observation way.

Run in IDE Debug mode

Create a big Java archive

J
o
b
 E

x
e
c
u
ti
o
n Worker

Node 1

Worker
Node 6

Worker
Node 2

Worker
Node 7

Worker
Node 3

Worker
Node 4

Worker
Node 9

Worker
Node 5

Worker
Node 10

Worker
Node 8

R
e
p
la

y

la
n
e

Serialization

Deserialization

C
a
p
tu

re

 l
a
n
e

Master
Node 0

Fig. 1: An overview of our environment extraction and replay methodology

3 Reference Architecture

In this Section, we present the reference architecture according to the requirements described

in Section 2. Figure 1 shows the architecture of the prototype. Our implementation of the

reference architecture uses open source technologies. There is a plan to open source the

reference architecture in several steps.

Fig. 2: Example of a job graph in Apache Flink

As depicted in Figure 1 the job fails in worker node number eight. Furthermore Figure 1

shows our reference architecture which consists of two parts: the capture lane and the

replay lane. The capture lane allows users to get a subset of a defined workflow of UDFs

using not only second order functions of operators such as map and reduce. During the

replay lane a process in the reference architecture translates the recorded subset.

In Apache Flink there is a master and multiple worker nodes [Ba10]. The Apache Flink

JobManager is the master node and the TaskManagers are the worker. In order to accomplish

a record and replay workflow, the replay process requires complete information about the

68 Eduard Bergen, Stefan Edlich

executed job. First a data scientist ensures that a native agent attaches to a specific worker

node. Every time a failure occurs in the attached mode within the cluster, a native agent

creates a big Java archive on the filesystem.

This paper primarily focuses on our novel process for subset extraction and replay. Although

other systems introspect extractions in the form of a whole job graph, our approach goes a

step further by determining low-level characteristics to generate a small environment for

later analysis. Additionally, systems exploring and tracing code via remote connections

either suffer from getting the right place of a tuple value or need to generate source code to

connect with precompiled operators.

While the investigated application handles specific application errors by itself, with small

pieces of code we extract and serialize also the environment, additional runtime values,

such as current input data of used operator. A native agent appends the recorded information

about the environment to the Java archive file during the exception handling in the Java

process.

Figure 3 shows the workflow of extraction and replay. Inside the web interface, archived jobs

also contain the corresponding subset of the failed job. Hence, users are able to download

the created archived jar-File for further local inspection.

Capture

Error occurred

Receive
Environment

Add InputData
and JobGraph

Serialize to file

Big archive

Replay

Big archive

Deserialize Alter variables
Set debug

points

Run Apache Flink in
Debug mode locally

Fig. 3: An overview of extraction and replay activity in Apache Flink

The replay component takes in Figure 3 the archive, extracts the subset and starts a transla-

tion process in a local development environment. The translation process consists of three

steps. First, the native agent serializes needed variables. Then updates of the configuration

follow and at the end there is a need to use specifically overridden classes to inflate current

input data for the used operator.

Before the replay process starts, data scientists execute run configurations on a homogeneous

and small local machine. After the setup of workflow, users set debug points in specific

lines in the source code. Since the current job executes, the attached debugger stops at

user defined debug points. Data scientists usually use in debug session an Integrated

Development Environment (IDE) to step through the call graph and observe the values of

variables. Now that we have introduced our reference architecture, the following Section

gives an impact about the usage and behavior of our reference architecture.

Post-Debugging in Large Scale Big Data Analytic Systems 69

4 Experiences

In a RnR system such as our reference architecture that offers comprehensive code coverage,

the challenge for data scientists quickly becomes figuring out what not to track. The main

technique for filtering noisy data objects is to define transformation classes. In the record

component as depicted in Figure 3, an implementation of a JVMTI native agent offers such

a possibility.

During the attachment phase at the JVM, the native agent activates common capabilities

to start receiving events such as class calls in a bytecode structure. Each time the JVM

invokes a callback with the name ClassFileLoadHook the native agent executes a registered

method. Accordingly, the callback method initiates a class file transformation and basically

exchanges current bytecode with the desired bytecode of the transformation class.

In order to enable the class transformation, the native agent requires the desired transforma-

tion classes. Thus, the deployment of the native agent bundles compiled Java classes. We

have used our reference architecture extensively to understand system behavior mainly in

development environments. One issue [AFI14] in which our reference architecture could be

useful is a long running Apache Flink job fail because of an IndexOutOfBoundsException.

We have recreated this exception in a simple case as shown in Listing 1. Instead of using a

constant value as in Listing 1, we used to input data from the production environment.

Figure 4 shows the replayed Java stack trace and expresses the proof of a working im-

plementation of our reference architecture. Thus, data scientists begin root-causing as

depicted in Figure 4 at line 94 of the WordCount-class, step-through the call graph until

DataSourceTask-class and try to analyze why the program breaks in the invoke-method

locally.

Fig. 4: A Java stack trace after replay with our reference architecture in Apache Flink

With the subset record and replay reference architecture, we are able to debug in a local

environment and find the root cause. Compared to the time it takes to reproduce the failure

in issue [AFI14], with our reference architecture, data scientists and developers are able to

focus more on finding the root cause and solving the problem.

5 Conclusion

We have described our reference architecture, a new facility for debugging of LSAs through

dynamic bytecode instrumentation. We have described and shown the primary features of

our reference architecture, including details of record process and entry parts for further

development. Also, we have demonstrated the use in root-causing a given problem. Although

it is hard to design a single general approach of value extraction that replays all runtime

70 Eduard Bergen, Stefan Edlich

failure types immediately, it is still feasible to design application-oriented schemes for

specific application scenarios.

6 Future Work

Our reference architecture provides a reliable and extensible foundation for further work

to enhance our possibility to observe and post debug. We actively extend and update our

reference architecture. Further development of components focuses first on automation

in deployment and managing of agents, second in a plug-in system to address different

observed program versions, and third in the visualization of subset reduced call graphs.

7 Acknowledgement

This work is generously funded by the Federal Ministry of Education and Research under

the reference number 01IS14013D and was created as a part of the BBDC.berlin project.

References

[AF16] Apache Software Foundation: Flink Fast and reliable large-scale data process-

ing engine, 2016, URL: http://flink.apache.org, visited on: 03/15/2016.

[AFI14] Apache Software Foundation: ASF JIRA: [FLINK-1000] Job fails because an

IndexOutOfBoundsException, 2014, URL: https://issues.apache.org/jira/
browse/FLINK-1000, visited on: 03/15/2016.

[An13] Ankur, D.; Zaharia, M.; Shenker, S.; Stoica, I.: Arthur: Rich Post-Facto De-

bugging for Production Analytics Applications, 2013, URL: http://ankurdave.
com/dl/arthur-atc13.pdf, visited on: 03/15/2016.

[AS16] Apache Software Foundation: Spark Lightning-fast cluster computing, 2016,

URL: http://spark.apache.org, visited on: 03/15/2016.

[Ba10] Battré, D.; Ewen, S.; Hueske, F.; Kao, O.; Markl, V.; Warneke, D.: Nephele/-

PACTs: A Programming Model and Execution Framework for Web-scale

Analytical Processing. In: Proceedings of the 1st ACM Symposium on Cloud

Computing. SoCC ’10, ACM, Indianapolis, Indiana, USA, pp. 119–130, 2010,

ISBN: 978-1-4503-0036-0.

[CAA11] Cheney, J.; Ahmed, A.; Acar, U. a.: Provenance As Dependency Analysis.

Mathematical. Structures in Comp. Sci. 21/6, pp. 1301–1337, 2011, ISSN:

0960-1295.

[Co15] Condie, T.; Gulzar, M. A.; Interlandi, M.; Kim, M.; Millstein, T.; Tetali, S.;

Yoo, S.: Spark-BDD: Debugging Big Data Applications. In: the 16th Interna-

tional Workshop on High Performance Transaction Systems (HPTS). 2015.

Post-Debugging in Large Scale Big Data Analytic Systems 71

http://flink.apache.org
https://issues.apache.org/jira/browse/FLINK-1000
https://issues.apache.org/jira/browse/FLINK-1000
http://ankurdave.com/dl/arthur-atc13.pdf
http://ankurdave.com/dl/arthur-atc13.pdf
http://spark.apache.org

[CSL04] Cantrill, B. M.; Shapiro, M. W.; Leventhal, A. H.: Dynamic Instrumentation of

Production Systems. In: Proceedings of the Annual Conference on USENIX

Annual Technical Conference. ATEC ’04, USENIX Association, Boston, MA,

pp. 2–2, 2004.

[CWW00] Cui, Y.; Widom, J.; Wiener, J. L.: Tracing the Lineage of View Data in a

Warehousing Environment. ACM Transactions on Database Systems 25/2,

pp. 179–227, 2000, ISSN: 0362-5915.

[Fe15] Ferber, M.: FerbJmon Tools - Visualizing Thread Access on Java Objects using

Lightweight Runtime Monitoring. In: Euro-Par 2015: Parallel Processing

Workshops: Euro-Par 2015 International Workshops, Vienna, Austria, August

24-25, 2015, Revised Selected Papers. Springer International Publishing,

Cham, pp. 147–159, 2015, ISBN: 978-3-319-27308-2.

[HT14] Honarmand, N.; Torrellas, J.: Replay Debugging: Leveraging Record and Re-

play for Program Debugging. In: Proceeding of the 41st Annual International

Symposium on Computer Architecuture. ISCA ’14, IEEE Press, Minneapolis,

Minnesota, USA, pp. 445–456, 2014, ISBN: 978-1-4799-4394-4.

[JYB11] Jagannath, V.; Yin, Z.; Budiu, M.: Monitoring and Debugging DryadLINQ

Applications with Daphne. In: IPDPS Workshops. IEEE, pp. 1266–1273, 2011,

ISBN: 978-1-61284-425-1.

[LDY13] Logothetis, D.; De, S.; Yocum, K.: Scalable Lineage Capture for Debugging

DISC Analytics. In: Proceedings of the 4th Annual Symposium on Cloud

Computing. SoCC ’13, ACM, Santa Clara, California, 17:1–17:15, 2013, ISBN:

978-1-4503-2428-1.

[Ma13] Marek, L.; Zheng, Y.; Ansaloni, D.; Bulej, L.; Sarimbekov, A.; Binder, W.;

Qi, Z.: Introduction to Dynamic Program Analysis with DiSL. In: Proceedings

of the 4th ACM/SPEC International Conference on Performance Engineering.

ICPE ’13, ACM, Prague, Czech Republic, pp. 429–430, 2013, ISBN: 978-1-

4503-1636-1, visited on: 03/15/2016.

[OC16] Oracle Corporation: JVM Tool Interface Version 1.2.3, 2016, URL: https:
//docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html, visited on:

03/15/2016.

[OR11] Olston, C.; Reed, B.: Inspector Gadget: A Framework for Custom Monitoring

and Debugging of Distributed Dataflows. PVLDB 4/12, pp. 1237–1248, 2011,

visited on: 03/15/2016.

[Vi10] Vicknair, C.: Research Issues in Data Provenance. In: Proceedings of the

48th Annual Southeast Regional Conference. ACM SE ’10, ACM, Oxford,

Mississippi, 20:1–20:4, 2010, ISBN: 978-1-4503-0064-3.

[Wi12] Wieder, A.; Bhatotia, P.; Post, A.; Rodrigues, R.: Orchestrating the Deploy-

ment of Computations in the Cloud with Conductor. In: Proceedings of the

9th USENIX Conference on Networked Systems Design and Implementation.

NSDI’12, USENIX Association, San Jose, CA, pp. 27–27, 2012.

72 Eduard Bergen, Stefan Edlich

https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

