



# Die Gratwanderung zwischen qualitativ hochwertigen und einfach zu erstellenden domänenspezifischen Textanalysen (High quality and easy domain specific text analysis: A balancing act)

Cornelia Kiefer Graduate School of Excellence advanced Manufacturing Engineering Universität Stuttgart

## Introduction

- Text Analytics answers questions in humanities, sciences and industry
- IT, Text Analytics and Domain Knowledge needed
- Solution: simplified ad hoc Text Analysis (e.g. Leipzig Corpus Miner)



#### Introduction

**University of Stuttgart** Germany



# Introduction

### But how to ensure that:

- simplified != less quality
- Ordinary user (domain expert) of Text Analytics gets high quality results

## This work: Data Quality

- Illustrate two data quality indicators and reveal quality problems in simplified text analytic pipelines
- Basis for:
  - Consumer-oriented Text Analytics
  - Improvement of simplified ad hoc Text Analytics



#### **Motivation**



# **Motivation**

Germany

- A simplified analysis of bad quality text data can lead to wrong research results in humanities and sciences
- A simplified analysis of various text types with a simplified consumer which is expecting only one type of text leads to bad quality results



Bilderguellen: http://www.simpsonsworld.com, https://www.amazon.de/, https://twitter.com, https://www.wikipedia.de/

© Cornelia Kiefer, Universität Stuttgart, IPVS



# **Research Question**

- Illustrate two data quality indicators in a use case from humanities
- Show problems of simplifications of non-expert text analytics and modules therein



University of Stuttgart

Germany

- Little research on data quality of unstructured text data
- [So04] lists categories for data quality dimensions for unstructured text data together with indicators
- In [Ki16] we suggested data quality dimensions for unstructured data and listed concrete indicators for text data, two of them are illustrated in this work on a use case in humanities
- In [So04] and [Ki16] data quality problems are not illustrated with real data and in a use case scenario as in this work





## **Use Case**

Germany

- A linguist wants to analyse young people's language in social networks
- E.g. via distribution of adjectives or nouns in selected social media data over time
- Task leads to the text analysis pipeline below



## **Data Quality**

- "Fitness for use by the data consumer" [WS96]
- Algorithms and Text Analytic Modules are also data consumers:



School of Excellence



# Indicators to Measure the quality of text data

### Indicators [Ki16]:

- Percentage of noisy data:
  - spelling mistakes
  - Abbreviations
  - unknown words
- Fit of training data:





# Identification of DQ problems in the use case





## Language Identification

| Data                                | Accuracy          |                                    |                                      |
|-------------------------------------|-------------------|------------------------------------|--------------------------------------|
|                                     | Tika <sup>1</sup> | Language-<br>detector <sup>2</sup> | Language-<br>Identifier <sup>3</sup> |
| News (Penn Treebank, see [MMS93])   | 86                | 96                                 | 96                                   |
| Novels (Brown, see [FK79])          | 84                | 89                                 | 91                                   |
| Tweets (Twitter corpus, see [De13]) | 47                | 72                                 | 77                                   |
| Chat posts (NPS Chat, see [FLM])    | 20                | 22                                 | 33                                   |

#### Information on data consumers:

- Tika trained on clean data → expects clean data
- Language-detector was also trained on tweets → expects clean data and tweets
- LanguageIdentifier trained on newsgroups → expects newsgroups texts





# Identification of DQ problems in the use case





# **Part of Speech Tagging**

e.g. used in Leipzig Corpus Miner

| Data                                | Accuracy          |                       |                      |
|-------------------------------------|-------------------|-----------------------|----------------------|
|                                     | NLTK <sup>1</sup> | Stanford <sup>2</sup> | OpenNLP <sup>3</sup> |
| News (Penn Treebank, see [MMS93])   | 100               | 91                    | 90                   |
| Novels (Brown, see [FK79])          | 60                | 63                    | 63                   |
| Tweets (Twitter corpus, see [De13]) | 65                | 67                    | 70                   |
| Chat posts (NPS Chat, see [FLM])    | 64                | 62                    | 62                   |

Maybe a good predictor: Similarity between clean data and Chat posts?

Information on consumers:

 Standard tools trained on clean data (from left to right: Penn Treebank, Wall Street Journal, not specified) → expect clean data

1) http://www.nltk.org/, http://nlp.stanford.edu/software/tagger.shtml, https://opennlp.apache.org/



# **Conclusion and Future Work**

- Illustration of two concrete problems in a non-expert text analysis pipeline
- These problems might be automatically identified using the two suggested data quality indicators (before executing the analysis pipeline, without annotated data):
  - fit of training data
  - percentage of noisy data

# Future Work:

- Implement the indicators and solutions deduced from these indicators
- Integrate these solutions (e.g. automatic selection of best fitting training data, automatic correction of noisy data) to simplified ad hoc text analytics



# **Contact Information**

### Cornelia Kiefer Cornelia.Kiefer@gsame.uni-stuttgart.de



**[De13]** Derczynski, L. et al.: Twitter Part-of-Speech Tagging for All: Overcoming Sparse and Noisy Data: Proceedings of the International Conference on Recent Advances in Natural Language Processing. Association for Computational Linguistics, 2013.

**[FK79]** Francis, W. N.; Kučera, H.: Manual of Information to Accompany A Standard Corpus of Present-day Edited American English, for Use with Digital Computers. Brown University, Department of Lingustics, 1979. **[FLM]** Forsyth, E.; Lin, J.; Martell, C.: The NPS Chat Corpus. http://faculty.nps.edu/cmartell/NPSChat.htm, 03.11.2016.

**[Ki16]** Kiefer, Cornelia (2016): Assessing the Quality of Unstructured Data: An Initial Overview. In: Ralf Krestel, Davide Mottin und Emmanuel Müller (Hg.): CEUR Workshop Proceedings. Proceedings of the LWDA. Potsdam. Aachen (CEUR Workshop Proceedings), S. 62–73. Online verfügbar unter http://ceur-ws.org/Vol-1670/#paper-25. **[MMS93]** Marcus, M. P.; Marcinkiewicz, M. A.; Santorini, B.: Building a Large Annotated Corpus of English: The Penn Treebank. In Comput. Linguist., 1993, 19; S. 313–330.

**[So04]** Sonntag, Daniel (2004): Assessing the Quality of Natural Language Text Data. In: GI Jahrestagung. 1. Aufl., S. 259–263.

**[WS96]** R. Y. Wang and D. M. Strong. Beyond accuracy: what data quality means to data consumers. J. Manage. Inf. Syst., 12(4):5{33, 1996.